Tengchao Huang , Xuanwei Chen , Huosheng Hu , Shuang Song , Guifang Shao , Qingyuan Zhu
{"title":"非结构化环境中铰接式工程车辆的地形自适应运动规划器","authors":"Tengchao Huang , Xuanwei Chen , Huosheng Hu , Shuang Song , Guifang Shao , Qingyuan Zhu","doi":"10.1016/j.autcon.2024.105864","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a terrain-adaptive motion planner is developed specifically for articulated construction vehicles (ACVs) to address instability issues caused by elevation changes on unstructured construction sites—challenges that traditional 2D motion planners struggle to manage effectively. The proposed planner adopts a modular framework, incorporating a terrain elevation model, an articulated vehicle kinematic model, and a posture response model. These models collaboratively capture the dynamic interactions between the vehicle and the terrain. The planner utilizes a multi-objective evaluation function to enhance the vehicle's 3D motion stability, especially in challenging terrains. By considering real-time vehicle-terrain interactions, this function estimates and optimizes the vehicle's stability. The planner's effectiveness is validated through field tests with a scaled-down ACV prototype, demonstrating significant improvements in stability and confirming its potential for practical application on unstructured terrains.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"168 ","pages":"Article 105864"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terrain-adaptive motion planner for articulated construction vehicles in unstructured environments\",\"authors\":\"Tengchao Huang , Xuanwei Chen , Huosheng Hu , Shuang Song , Guifang Shao , Qingyuan Zhu\",\"doi\":\"10.1016/j.autcon.2024.105864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a terrain-adaptive motion planner is developed specifically for articulated construction vehicles (ACVs) to address instability issues caused by elevation changes on unstructured construction sites—challenges that traditional 2D motion planners struggle to manage effectively. The proposed planner adopts a modular framework, incorporating a terrain elevation model, an articulated vehicle kinematic model, and a posture response model. These models collaboratively capture the dynamic interactions between the vehicle and the terrain. The planner utilizes a multi-objective evaluation function to enhance the vehicle's 3D motion stability, especially in challenging terrains. By considering real-time vehicle-terrain interactions, this function estimates and optimizes the vehicle's stability. The planner's effectiveness is validated through field tests with a scaled-down ACV prototype, demonstrating significant improvements in stability and confirming its potential for practical application on unstructured terrains.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"168 \",\"pages\":\"Article 105864\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580524006009\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524006009","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Terrain-adaptive motion planner for articulated construction vehicles in unstructured environments
In this paper, a terrain-adaptive motion planner is developed specifically for articulated construction vehicles (ACVs) to address instability issues caused by elevation changes on unstructured construction sites—challenges that traditional 2D motion planners struggle to manage effectively. The proposed planner adopts a modular framework, incorporating a terrain elevation model, an articulated vehicle kinematic model, and a posture response model. These models collaboratively capture the dynamic interactions between the vehicle and the terrain. The planner utilizes a multi-objective evaluation function to enhance the vehicle's 3D motion stability, especially in challenging terrains. By considering real-time vehicle-terrain interactions, this function estimates and optimizes the vehicle's stability. The planner's effectiveness is validated through field tests with a scaled-down ACV prototype, demonstrating significant improvements in stability and confirming its potential for practical application on unstructured terrains.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.