{"title":"四 川 盆 地 西 部 至 青 藏 高 原 东 部 陡 坡 地 区 PM1 的 形 成 机 理 和 来 源 的 梯 度 变 化","authors":"Daiying Yin , Suping Zhao , Ye Yu , Shaofeng Qi , Xiaoling Zhang","doi":"10.1016/j.atmosres.2024.107755","DOIUrl":null,"url":null,"abstract":"<div><div>Vertical distributions of chemical components of particulate matter (PM) are essential for better understanding the climate, environmental and health effects. The steep slope from western SiChuan Basin (SCB) to eastern Tibetan Plateau (TP) provides a good platform for obtaining the gradient variations of PM chemical components. Daytime and nighttime PM<sub>1</sub> (particulate matter smaller than 1 μm) samples were collected with the medium-volume sampler at six sites with elevation ranging from 500 m to 3500 m (Chengdu, Sanbacun, Wenchuan, Lixian, Maerkang and Hongyuan). The secondary inorganic ions and carbonaceous aerosols were the largest contributor to PM<sub>1</sub> concentrations. The chemical components from the anthropogenic sources existed strong stratification with high concentrations inside the basin, while primary natural ions showed little discrepancy among the sites. The concentrations of primary inorganic ions from anthropogenic sources were much higher at nighttime than daytime, which was contrary to the diurnal cycle of secondary inorganic ions. Spatial heterogeneity of PM chemical components was large between basin and plateau sites, especially for NO<sub>3</sub><sup>−</sup> and NH<sub>4</sub><sup>+</sup>, large depending on season and daylight. The excess NH<sub>4</sub><sup>+</sup> concentrations existed in spring, summer and fall, while SO<sub>4</sub><sup>2−</sup> and NO<sub>3</sub><sup>−</sup> cannot be completely neutralized by NH<sub>4</sub><sup>+</sup> in winter. The proportion of secondary formation in all sources significantly increased from about 10 % to 30 %–40 % with the increased elevation, while the contribution of motor vehicles declined from western SCB to eastern TP. This study will fill the scarce observations of PM chemical components at the sloped terrain and deepen the understanding of formation mechanism of heavy pollution inside the basin.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"312 ","pages":"Article 107755"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient variations of formation mechanisms and sources of PM1 at the steep slope from western SiChuan Basin to eastern Tibetan Plateau\",\"authors\":\"Daiying Yin , Suping Zhao , Ye Yu , Shaofeng Qi , Xiaoling Zhang\",\"doi\":\"10.1016/j.atmosres.2024.107755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vertical distributions of chemical components of particulate matter (PM) are essential for better understanding the climate, environmental and health effects. The steep slope from western SiChuan Basin (SCB) to eastern Tibetan Plateau (TP) provides a good platform for obtaining the gradient variations of PM chemical components. Daytime and nighttime PM<sub>1</sub> (particulate matter smaller than 1 μm) samples were collected with the medium-volume sampler at six sites with elevation ranging from 500 m to 3500 m (Chengdu, Sanbacun, Wenchuan, Lixian, Maerkang and Hongyuan). The secondary inorganic ions and carbonaceous aerosols were the largest contributor to PM<sub>1</sub> concentrations. The chemical components from the anthropogenic sources existed strong stratification with high concentrations inside the basin, while primary natural ions showed little discrepancy among the sites. The concentrations of primary inorganic ions from anthropogenic sources were much higher at nighttime than daytime, which was contrary to the diurnal cycle of secondary inorganic ions. Spatial heterogeneity of PM chemical components was large between basin and plateau sites, especially for NO<sub>3</sub><sup>−</sup> and NH<sub>4</sub><sup>+</sup>, large depending on season and daylight. The excess NH<sub>4</sub><sup>+</sup> concentrations existed in spring, summer and fall, while SO<sub>4</sub><sup>2−</sup> and NO<sub>3</sub><sup>−</sup> cannot be completely neutralized by NH<sub>4</sub><sup>+</sup> in winter. The proportion of secondary formation in all sources significantly increased from about 10 % to 30 %–40 % with the increased elevation, while the contribution of motor vehicles declined from western SCB to eastern TP. This study will fill the scarce observations of PM chemical components at the sloped terrain and deepen the understanding of formation mechanism of heavy pollution inside the basin.</div></div>\",\"PeriodicalId\":8600,\"journal\":{\"name\":\"Atmospheric Research\",\"volume\":\"312 \",\"pages\":\"Article 107755\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169809524005374\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809524005374","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Gradient variations of formation mechanisms and sources of PM1 at the steep slope from western SiChuan Basin to eastern Tibetan Plateau
Vertical distributions of chemical components of particulate matter (PM) are essential for better understanding the climate, environmental and health effects. The steep slope from western SiChuan Basin (SCB) to eastern Tibetan Plateau (TP) provides a good platform for obtaining the gradient variations of PM chemical components. Daytime and nighttime PM1 (particulate matter smaller than 1 μm) samples were collected with the medium-volume sampler at six sites with elevation ranging from 500 m to 3500 m (Chengdu, Sanbacun, Wenchuan, Lixian, Maerkang and Hongyuan). The secondary inorganic ions and carbonaceous aerosols were the largest contributor to PM1 concentrations. The chemical components from the anthropogenic sources existed strong stratification with high concentrations inside the basin, while primary natural ions showed little discrepancy among the sites. The concentrations of primary inorganic ions from anthropogenic sources were much higher at nighttime than daytime, which was contrary to the diurnal cycle of secondary inorganic ions. Spatial heterogeneity of PM chemical components was large between basin and plateau sites, especially for NO3− and NH4+, large depending on season and daylight. The excess NH4+ concentrations existed in spring, summer and fall, while SO42− and NO3− cannot be completely neutralized by NH4+ in winter. The proportion of secondary formation in all sources significantly increased from about 10 % to 30 %–40 % with the increased elevation, while the contribution of motor vehicles declined from western SCB to eastern TP. This study will fill the scarce observations of PM chemical components at the sloped terrain and deepen the understanding of formation mechanism of heavy pollution inside the basin.
期刊介绍:
The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.