{"title":"利用 3D-Var 对多源观测数据进行同化对模拟印度卡纳塔克邦极端降雨事件的相对影响","authors":"Ajay Bankar , V. Rakesh , Smrati Purwar","doi":"10.1016/j.atmosres.2024.107777","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the impact of assimilating diverse observational data on forecasting extreme rainfall events (EREs) using a three dimensional variational (3D-Var) assimilation approach. It focuses on 38 EREs across three meteorological divisions in Karnataka, India, using a high-resolution (03-km) Weather Research and Forecasting (WRF) model with three nested domains. Five distinct experiments were conducted, including a Control experiment without assimilation, and subsequent experiments integrating observations from various sources like atmospheric profiles from Atmospheric InfraRed Sounder (AIRS) and Moderate resolution Imaging Spectroradiometer (MODIS) satellites and radiosondes, ocean surface wind observations from Advanced Scatterometer (ASCAT), Special Sensor Microwave Imager (SSMI), and WindSAT satellites and buoys, ground observations from Karnataka State Natural Disaster Monitoring Centre (KSNDMC), as well as a combined assimilation experiment with all available observations. The accuracy of rainfall forecasts is evaluated by comparing model outputs with high-resolution telemetric rain-gauge (TRG; 6480 stations) data and other meteorological parameters against telemetric weather station (TWS; 860 stations) data from KSNDMC. Assimilation experiments show positive improvements over control experiment in predicting rainfall. Results consistently indicate underprediction of rainfall in the intricate topographical region of the Western Ghats (WG) across all experiments, contrasting with overprediction along the coastal areas of Karnataka. The experiment involving Ocean Winds showcased a substantial 40 % reduction in rainfall overprediction (above 2 mm threshold). Both Ocean Winds and Station Data assimilation notably enhanced rainfall prediction accuracy over most of the regions in Karnataka, with Ocean Winds exhibiting the highest improvement (53 %), closely followed by Station Data (50 %). Importantly, assimilating Ocean Winds and Station Data aided in reducing overprediction, while assimilating Satellite Profiles reduced underprediction in the interior part of Karnataka but increased overprediction over the coastal region compared to the control experiment. Frequency of occurrence of rainfall is considerably enhanced along the coastline in all 3D-Var experiments. Bias score indicates maximum improvement in assimilation using Ocean Winds and Station Data. Simulation of basic meteorological parameters also improved with assimilation particularly during the day hours. The results underscore the crucial role of assimilation of satellite and in-situ observations in improving forecast accuracy of EREs during the monsoon season.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"313 ","pages":"Article 107777"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative Impact of Assimilation of Multi-Source Observations using 3D-Var on Simulation of Extreme Rainfall Events over Karnataka, India\",\"authors\":\"Ajay Bankar , V. Rakesh , Smrati Purwar\",\"doi\":\"10.1016/j.atmosres.2024.107777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the impact of assimilating diverse observational data on forecasting extreme rainfall events (EREs) using a three dimensional variational (3D-Var) assimilation approach. It focuses on 38 EREs across three meteorological divisions in Karnataka, India, using a high-resolution (03-km) Weather Research and Forecasting (WRF) model with three nested domains. Five distinct experiments were conducted, including a Control experiment without assimilation, and subsequent experiments integrating observations from various sources like atmospheric profiles from Atmospheric InfraRed Sounder (AIRS) and Moderate resolution Imaging Spectroradiometer (MODIS) satellites and radiosondes, ocean surface wind observations from Advanced Scatterometer (ASCAT), Special Sensor Microwave Imager (SSMI), and WindSAT satellites and buoys, ground observations from Karnataka State Natural Disaster Monitoring Centre (KSNDMC), as well as a combined assimilation experiment with all available observations. The accuracy of rainfall forecasts is evaluated by comparing model outputs with high-resolution telemetric rain-gauge (TRG; 6480 stations) data and other meteorological parameters against telemetric weather station (TWS; 860 stations) data from KSNDMC. Assimilation experiments show positive improvements over control experiment in predicting rainfall. Results consistently indicate underprediction of rainfall in the intricate topographical region of the Western Ghats (WG) across all experiments, contrasting with overprediction along the coastal areas of Karnataka. The experiment involving Ocean Winds showcased a substantial 40 % reduction in rainfall overprediction (above 2 mm threshold). Both Ocean Winds and Station Data assimilation notably enhanced rainfall prediction accuracy over most of the regions in Karnataka, with Ocean Winds exhibiting the highest improvement (53 %), closely followed by Station Data (50 %). Importantly, assimilating Ocean Winds and Station Data aided in reducing overprediction, while assimilating Satellite Profiles reduced underprediction in the interior part of Karnataka but increased overprediction over the coastal region compared to the control experiment. Frequency of occurrence of rainfall is considerably enhanced along the coastline in all 3D-Var experiments. Bias score indicates maximum improvement in assimilation using Ocean Winds and Station Data. Simulation of basic meteorological parameters also improved with assimilation particularly during the day hours. The results underscore the crucial role of assimilation of satellite and in-situ observations in improving forecast accuracy of EREs during the monsoon season.</div></div>\",\"PeriodicalId\":8600,\"journal\":{\"name\":\"Atmospheric Research\",\"volume\":\"313 \",\"pages\":\"Article 107777\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169809524005593\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809524005593","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Relative Impact of Assimilation of Multi-Source Observations using 3D-Var on Simulation of Extreme Rainfall Events over Karnataka, India
This study explores the impact of assimilating diverse observational data on forecasting extreme rainfall events (EREs) using a three dimensional variational (3D-Var) assimilation approach. It focuses on 38 EREs across three meteorological divisions in Karnataka, India, using a high-resolution (03-km) Weather Research and Forecasting (WRF) model with three nested domains. Five distinct experiments were conducted, including a Control experiment without assimilation, and subsequent experiments integrating observations from various sources like atmospheric profiles from Atmospheric InfraRed Sounder (AIRS) and Moderate resolution Imaging Spectroradiometer (MODIS) satellites and radiosondes, ocean surface wind observations from Advanced Scatterometer (ASCAT), Special Sensor Microwave Imager (SSMI), and WindSAT satellites and buoys, ground observations from Karnataka State Natural Disaster Monitoring Centre (KSNDMC), as well as a combined assimilation experiment with all available observations. The accuracy of rainfall forecasts is evaluated by comparing model outputs with high-resolution telemetric rain-gauge (TRG; 6480 stations) data and other meteorological parameters against telemetric weather station (TWS; 860 stations) data from KSNDMC. Assimilation experiments show positive improvements over control experiment in predicting rainfall. Results consistently indicate underprediction of rainfall in the intricate topographical region of the Western Ghats (WG) across all experiments, contrasting with overprediction along the coastal areas of Karnataka. The experiment involving Ocean Winds showcased a substantial 40 % reduction in rainfall overprediction (above 2 mm threshold). Both Ocean Winds and Station Data assimilation notably enhanced rainfall prediction accuracy over most of the regions in Karnataka, with Ocean Winds exhibiting the highest improvement (53 %), closely followed by Station Data (50 %). Importantly, assimilating Ocean Winds and Station Data aided in reducing overprediction, while assimilating Satellite Profiles reduced underprediction in the interior part of Karnataka but increased overprediction over the coastal region compared to the control experiment. Frequency of occurrence of rainfall is considerably enhanced along the coastline in all 3D-Var experiments. Bias score indicates maximum improvement in assimilation using Ocean Winds and Station Data. Simulation of basic meteorological parameters also improved with assimilation particularly during the day hours. The results underscore the crucial role of assimilation of satellite and in-situ observations in improving forecast accuracy of EREs during the monsoon season.
期刊介绍:
The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.