{"title":"将铁29%镍18%钴合金板金相试样上的凹凸作为剔除标准","authors":"P. A. Golovkin","doi":"10.1007/s11015-024-01814-2","DOIUrl":null,"url":null,"abstract":"<div><p>The causes of the formation of bumps on metallographic specimens of sheets and strips subject to inspection are established by analyzing the components of Kovar alloy (trademarked name of Fe29%Ni18%Co precision alloy; named 29NK-VI in Russia) and identifying possible deviations from its manufacturing process, starting from the preparation of the initial melt. It was found out that the formation of bumps is a manifestation of leading diffusion of some alloy components into others, mainly cobalt into nickel. Such a phenomenon may occur in case of significant chemical inhomogeneity of the metallic material caused by the segregation of the components of its initial melt according to their magnetic susceptibility and the refusal to homogenize the resulting ingot.</p><p>It is argued that bumps on specimens should be considered as a rejection criterion for a material intended for the manufacture of precision parts of vacuum electronic devices, as they are indicative of its unbalanced composition. The residual diffusion phenomena contribute to the change in the phase state of the material, followed by embrittlement, change in precise dimensions, and loss of vacuum in parts of vacuum electronic devices. It is assumed that residual diffusion is one of the causes of the γ→α phase transformation in Kovar at low temperatures.</p></div>","PeriodicalId":702,"journal":{"name":"Metallurgist","volume":"68 7","pages":"1050 - 1058"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bumps on metallographic specimens of Fe29%Ni18%Co alloy sheets as a rejection criterion\",\"authors\":\"P. A. Golovkin\",\"doi\":\"10.1007/s11015-024-01814-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The causes of the formation of bumps on metallographic specimens of sheets and strips subject to inspection are established by analyzing the components of Kovar alloy (trademarked name of Fe29%Ni18%Co precision alloy; named 29NK-VI in Russia) and identifying possible deviations from its manufacturing process, starting from the preparation of the initial melt. It was found out that the formation of bumps is a manifestation of leading diffusion of some alloy components into others, mainly cobalt into nickel. Such a phenomenon may occur in case of significant chemical inhomogeneity of the metallic material caused by the segregation of the components of its initial melt according to their magnetic susceptibility and the refusal to homogenize the resulting ingot.</p><p>It is argued that bumps on specimens should be considered as a rejection criterion for a material intended for the manufacture of precision parts of vacuum electronic devices, as they are indicative of its unbalanced composition. The residual diffusion phenomena contribute to the change in the phase state of the material, followed by embrittlement, change in precise dimensions, and loss of vacuum in parts of vacuum electronic devices. It is assumed that residual diffusion is one of the causes of the γ→α phase transformation in Kovar at low temperatures.</p></div>\",\"PeriodicalId\":702,\"journal\":{\"name\":\"Metallurgist\",\"volume\":\"68 7\",\"pages\":\"1050 - 1058\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgist\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11015-024-01814-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgist","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11015-024-01814-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Bumps on metallographic specimens of Fe29%Ni18%Co alloy sheets as a rejection criterion
The causes of the formation of bumps on metallographic specimens of sheets and strips subject to inspection are established by analyzing the components of Kovar alloy (trademarked name of Fe29%Ni18%Co precision alloy; named 29NK-VI in Russia) and identifying possible deviations from its manufacturing process, starting from the preparation of the initial melt. It was found out that the formation of bumps is a manifestation of leading diffusion of some alloy components into others, mainly cobalt into nickel. Such a phenomenon may occur in case of significant chemical inhomogeneity of the metallic material caused by the segregation of the components of its initial melt according to their magnetic susceptibility and the refusal to homogenize the resulting ingot.
It is argued that bumps on specimens should be considered as a rejection criterion for a material intended for the manufacture of precision parts of vacuum electronic devices, as they are indicative of its unbalanced composition. The residual diffusion phenomena contribute to the change in the phase state of the material, followed by embrittlement, change in precise dimensions, and loss of vacuum in parts of vacuum electronic devices. It is assumed that residual diffusion is one of the causes of the γ→α phase transformation in Kovar at low temperatures.
期刊介绍:
Metallurgist is the leading Russian journal in metallurgy. Publication started in 1956.
Basic topics covered include:
State of the art and development of enterprises in ferrous and nonferrous metallurgy and mining;
Metallurgy of ferrous, nonferrous, rare, and precious metals; Metallurgical equipment;
Automation and control;
Protection of labor;
Protection of the environment;
Resources and energy saving;
Quality and certification;
History of metallurgy;
Inventions (patents).