Younes Errouas, Ilyass El Kadmiri, Youssef Ben-Ali, Driss Bria
{"title":"基于斐波那契数列的准周期星型波导结构中的陷波缺陷模式","authors":"Younes Errouas, Ilyass El Kadmiri, Youssef Ben-Ali, Driss Bria","doi":"10.1134/S106378342460122X","DOIUrl":null,"url":null,"abstract":"<p>Understanding the interaction between electromagnetic wave propagation and the components of the photonic structure is crucial for developing advanced telecommunications systems. In this study, we investigate a one-dimensional Fibonacci quasiperiodic structure, consisting of periodic waveguides with resonators of varying lengths that depend on each other according to a Fibonacci sequence, attached to <i>N</i> evenly spaced sites. Our research reveals that the photonic bandgap of this structure is significantly influenced by the first two Fibonacci states, <i>d</i><sub>2in</sub> and <i>d</i><sub>21</sub>. Additionally, by introducing geometric defects at the resonators level, we enhance the structure’s ability to generate new permissible states within these gaps. The remarkably narrow width of these gaps confines defect modes to a very low-frequency range. Consequently, these defect modes emerge as distinct peaks in the transmission spectrum with optimal transmission and a very high-quality factor. Our results not only shed light on the core characteristics of photonic bandgaps, but also open up new possibilities for their practical use in telecommunications.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"489 - 496"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trapping Defect Modes in a Quasi-Periodic Star Waveguide Structure Based on the Fibonacci Sequence\",\"authors\":\"Younes Errouas, Ilyass El Kadmiri, Youssef Ben-Ali, Driss Bria\",\"doi\":\"10.1134/S106378342460122X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the interaction between electromagnetic wave propagation and the components of the photonic structure is crucial for developing advanced telecommunications systems. In this study, we investigate a one-dimensional Fibonacci quasiperiodic structure, consisting of periodic waveguides with resonators of varying lengths that depend on each other according to a Fibonacci sequence, attached to <i>N</i> evenly spaced sites. Our research reveals that the photonic bandgap of this structure is significantly influenced by the first two Fibonacci states, <i>d</i><sub>2in</sub> and <i>d</i><sub>21</sub>. Additionally, by introducing geometric defects at the resonators level, we enhance the structure’s ability to generate new permissible states within these gaps. The remarkably narrow width of these gaps confines defect modes to a very low-frequency range. Consequently, these defect modes emerge as distinct peaks in the transmission spectrum with optimal transmission and a very high-quality factor. Our results not only shed light on the core characteristics of photonic bandgaps, but also open up new possibilities for their practical use in telecommunications.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":\"66 11\",\"pages\":\"489 - 496\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106378342460122X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106378342460122X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
了解电磁波传播与光子结构元件之间的相互作用对于开发先进的电信系统至关重要。在本研究中,我们研究了一种一维斐波那契准周期结构,该结构由周期性波导组成,波导上的谐振器长度各异,根据斐波那契序列相互依赖,并连接到 N 个均匀分布的点上。我们的研究发现,这种结构的光子带隙受到前两个斐波那契态 d2in 和 d21 的显著影响。此外,通过在谐振器层面引入几何缺陷,我们增强了该结构在这些间隙内产生新的允许态的能力。这些间隙的宽度非常窄,将缺陷模式限制在非常低的频率范围内。因此,这些缺陷模式在透射谱中呈现出明显的峰值,具有最佳的透射率和非常高的品质因数。我们的研究结果不仅揭示了光子带隙的核心特性,还为其在电信领域的实际应用开辟了新的可能性。
Trapping Defect Modes in a Quasi-Periodic Star Waveguide Structure Based on the Fibonacci Sequence
Understanding the interaction between electromagnetic wave propagation and the components of the photonic structure is crucial for developing advanced telecommunications systems. In this study, we investigate a one-dimensional Fibonacci quasiperiodic structure, consisting of periodic waveguides with resonators of varying lengths that depend on each other according to a Fibonacci sequence, attached to N evenly spaced sites. Our research reveals that the photonic bandgap of this structure is significantly influenced by the first two Fibonacci states, d2in and d21. Additionally, by introducing geometric defects at the resonators level, we enhance the structure’s ability to generate new permissible states within these gaps. The remarkably narrow width of these gaps confines defect modes to a very low-frequency range. Consequently, these defect modes emerge as distinct peaks in the transmission spectrum with optimal transmission and a very high-quality factor. Our results not only shed light on the core characteristics of photonic bandgaps, but also open up new possibilities for their practical use in telecommunications.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.