应变梯度弹性理论中带有边缘裂缝的梁三点弯曲的混合有限元实现

IF 1.9 4区 工程技术 Q3 MECHANICS
Aleksandr Yu. Chirkov, Lidiia Nazarenko, Holm Altenbach
{"title":"应变梯度弹性理论中带有边缘裂缝的梁三点弯曲的混合有限元实现","authors":"Aleksandr Yu. Chirkov,&nbsp;Lidiia Nazarenko,&nbsp;Holm Altenbach","doi":"10.1007/s00161-024-01333-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers the problem of symmetrical three-point bending of a prismatic beam with an edge crack. The solution is obtained by the mixed finite element method within the simplified Toupin–Mindlin strain gradient elasticity theory. A mixed variational formulation of the boundary value problem for displacements–strains–stresses and their gradients is applied, simplifying the choice of approximating functions. The concept of energy balance is adopted to calculate the energy release rate with a virtual increase in crack length. The increment of the potential energy of an elastic body is determined by accounting for the strain and stress gradient contribution. Numerical calculations were performed using a quasi-uniform triangular mesh of the cross-type. The mesh refinement was applied in the vicinity of the crack tip, at the concentrated support, and the point of application of the transverse force, and uniform mesh partitioning was utilized in the rest of the beam. The fine-mesh analysis was carried out on the successively condensed meshes in the stress concentration domain for different values of the length scale parameter. The crack opening displacements and the distribution of strains and Cauchy stresses for various values of the length scale parameter are presented. An increase in this parameter increases the stiffness of the crack, which leads to a decrease in the crack opening displacements and a smooth closure of its faces at the crack tip. In addition, accounting for the scale parameter reduces the calculated values of strains and stresses near the crack tip. Based on the energy balance criterion, local fracture parameters such as the release rate of elastic energy at the crack tip and the stress intensity factor are determined for different values of the mesh step. The numerical calculations indicate the convergence of the obtained approximations. The main feature of solutions, which includes the strain gradient contribution, is the decrease in the values of the calculated parameters associated with the fracture energy compared to the classical elasticity theory.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"37 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-024-01333-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Mixed FEM implementation of three-point bending of the beam with an edge crack within strain gradient elasticity theory\",\"authors\":\"Aleksandr Yu. Chirkov,&nbsp;Lidiia Nazarenko,&nbsp;Holm Altenbach\",\"doi\":\"10.1007/s00161-024-01333-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper considers the problem of symmetrical three-point bending of a prismatic beam with an edge crack. The solution is obtained by the mixed finite element method within the simplified Toupin–Mindlin strain gradient elasticity theory. A mixed variational formulation of the boundary value problem for displacements–strains–stresses and their gradients is applied, simplifying the choice of approximating functions. The concept of energy balance is adopted to calculate the energy release rate with a virtual increase in crack length. The increment of the potential energy of an elastic body is determined by accounting for the strain and stress gradient contribution. Numerical calculations were performed using a quasi-uniform triangular mesh of the cross-type. The mesh refinement was applied in the vicinity of the crack tip, at the concentrated support, and the point of application of the transverse force, and uniform mesh partitioning was utilized in the rest of the beam. The fine-mesh analysis was carried out on the successively condensed meshes in the stress concentration domain for different values of the length scale parameter. The crack opening displacements and the distribution of strains and Cauchy stresses for various values of the length scale parameter are presented. An increase in this parameter increases the stiffness of the crack, which leads to a decrease in the crack opening displacements and a smooth closure of its faces at the crack tip. In addition, accounting for the scale parameter reduces the calculated values of strains and stresses near the crack tip. Based on the energy balance criterion, local fracture parameters such as the release rate of elastic energy at the crack tip and the stress intensity factor are determined for different values of the mesh step. The numerical calculations indicate the convergence of the obtained approximations. The main feature of solutions, which includes the strain gradient contribution, is the decrease in the values of the calculated parameters associated with the fracture energy compared to the classical elasticity theory.</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00161-024-01333-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-024-01333-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01333-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了带有边缘裂缝的棱柱梁的对称三点弯曲问题。在简化的 Toupin-Mindlin 应变梯度弹性理论下,采用混合有限元法求解。对位移-应变-应力及其梯度的边界值问题采用了混合变分公式,简化了近似函数的选择。采用能量平衡的概念来计算裂缝长度虚拟增加时的能量释放率。弹性体势能的增量是通过考虑应变和应力梯度的贡献来确定的。数值计算采用十字型准均匀三角网格。网格细化应用于裂缝尖端附近、集中支撑处和横向力作用点,梁的其余部分采用均匀网格划分。在应力集中域中,针对不同的长度标度参数值,对连续压缩的网格进行了精细网格分析。图中给出了不同长度标度参数值下的裂缝开口位移以及应变和考氏应力的分布。该参数的增加会提高裂缝的刚度,从而导致裂缝开口位移的减小和裂缝顶端面的平滑闭合。此外,考虑尺度参数还可降低裂缝尖端附近的应变和应力计算值。根据能量平衡准则,确定了不同网格步长值下的局部断裂参数,如裂纹尖端的弹性能量释放率和应力强度因子。数值计算表明所获得的近似值具有收敛性。与经典弹性理论相比,包括应变梯度贡献在内的解决方案的主要特点是与断裂能相关的计算参数值有所降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed FEM implementation of three-point bending of the beam with an edge crack within strain gradient elasticity theory

This paper considers the problem of symmetrical three-point bending of a prismatic beam with an edge crack. The solution is obtained by the mixed finite element method within the simplified Toupin–Mindlin strain gradient elasticity theory. A mixed variational formulation of the boundary value problem for displacements–strains–stresses and their gradients is applied, simplifying the choice of approximating functions. The concept of energy balance is adopted to calculate the energy release rate with a virtual increase in crack length. The increment of the potential energy of an elastic body is determined by accounting for the strain and stress gradient contribution. Numerical calculations were performed using a quasi-uniform triangular mesh of the cross-type. The mesh refinement was applied in the vicinity of the crack tip, at the concentrated support, and the point of application of the transverse force, and uniform mesh partitioning was utilized in the rest of the beam. The fine-mesh analysis was carried out on the successively condensed meshes in the stress concentration domain for different values of the length scale parameter. The crack opening displacements and the distribution of strains and Cauchy stresses for various values of the length scale parameter are presented. An increase in this parameter increases the stiffness of the crack, which leads to a decrease in the crack opening displacements and a smooth closure of its faces at the crack tip. In addition, accounting for the scale parameter reduces the calculated values of strains and stresses near the crack tip. Based on the energy balance criterion, local fracture parameters such as the release rate of elastic energy at the crack tip and the stress intensity factor are determined for different values of the mesh step. The numerical calculations indicate the convergence of the obtained approximations. The main feature of solutions, which includes the strain gradient contribution, is the decrease in the values of the calculated parameters associated with the fracture energy compared to the classical elasticity theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
15.40%
发文量
92
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena. Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信