改进 F 理论标准模型的统计数据

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Martin Bies, Mirjam Cvetič, Ron Donagi, Marielle Ong
{"title":"改进 F 理论标准模型的统计数据","authors":"Martin Bies,&nbsp;Mirjam Cvetič,&nbsp;Ron Donagi,&nbsp;Marielle Ong","doi":"10.1007/s00220-024-05148-7","DOIUrl":null,"url":null,"abstract":"<div><p>Much of the analysis of F-theory-based Standard Models boils down to computing cohomologies of line bundles on matter curves. By varying parameters one can degenerate such matter curves to singular ones, typically with many nodes, where the computation is combinatorial and straightforward. The question remains to relate the (a priori possibly smaller) value on the original curve to the singular one. In this work, we introduce some elementary techniques (pruning trees and removing interior edges) for simplifying the resulting nodal curves to a small collection of terminal ones that can be handled directly. When applied to the QSMs, these techniques yield optimal results in the sense that obtaining more precise answers would require currently unavailable information about the QSM geometries. This provides us with an opportunity to enhance the statistical bounds established in earlier research regarding the absence of vector-like exotics on the quark-doublet curve.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05148-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Improved Statistics for F-theory Standard Models\",\"authors\":\"Martin Bies,&nbsp;Mirjam Cvetič,&nbsp;Ron Donagi,&nbsp;Marielle Ong\",\"doi\":\"10.1007/s00220-024-05148-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Much of the analysis of F-theory-based Standard Models boils down to computing cohomologies of line bundles on matter curves. By varying parameters one can degenerate such matter curves to singular ones, typically with many nodes, where the computation is combinatorial and straightforward. The question remains to relate the (a priori possibly smaller) value on the original curve to the singular one. In this work, we introduce some elementary techniques (pruning trees and removing interior edges) for simplifying the resulting nodal curves to a small collection of terminal ones that can be handled directly. When applied to the QSMs, these techniques yield optimal results in the sense that obtaining more precise answers would require currently unavailable information about the QSM geometries. This provides us with an opportunity to enhance the statistical bounds established in earlier research regarding the absence of vector-like exotics on the quark-doublet curve.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 12\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05148-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05148-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05148-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于 F 理论的标准模型的大部分分析工作都归结为计算物质曲线上线束的同调。通过改变参数,我们可以把这些物质曲线退化为奇异曲线,通常有很多节点,计算是组合性的,也很简单。问题是如何将原始曲线上的(先验的可能较小的)值与奇异值联系起来。在这项工作中,我们介绍了一些基本技术(修剪树和去除内边),用于将生成的节点曲线简化为一小部分可直接处理的终端曲线。将这些技术应用于 QSM 时,可以获得最佳结果,因为要获得更精确的答案,需要目前无法获得的 QSM 几何信息。这为我们提供了一个机会,来加强早期研究中建立的关于夸克-双曲线上不存在类似矢量的外差的统计边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Statistics for F-theory Standard Models

Much of the analysis of F-theory-based Standard Models boils down to computing cohomologies of line bundles on matter curves. By varying parameters one can degenerate such matter curves to singular ones, typically with many nodes, where the computation is combinatorial and straightforward. The question remains to relate the (a priori possibly smaller) value on the original curve to the singular one. In this work, we introduce some elementary techniques (pruning trees and removing interior edges) for simplifying the resulting nodal curves to a small collection of terminal ones that can be handled directly. When applied to the QSMs, these techniques yield optimal results in the sense that obtaining more precise answers would require currently unavailable information about the QSM geometries. This provides us with an opportunity to enhance the statistical bounds established in earlier research regarding the absence of vector-like exotics on the quark-doublet curve.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信