具有软势能的玻尔兹曼方程的良好/全拟合性

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Xuwen Chen, Shunlin Shen, Zhifei Zhang
{"title":"具有软势能的玻尔兹曼方程的良好/全拟合性","authors":"Xuwen Chen,&nbsp;Shunlin Shen,&nbsp;Zhifei Zhang","doi":"10.1007/s00220-024-05157-6","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Boltzmann equation with the soft potential and angular cutoff. Inspired by the methods from dispersive PDEs, we establish its sharp local well-posedness and ill-posedness in <span>\\(H^{s}\\)</span> Sobolev space. We find the well/ill-posedness separation at regularity <span>\\(s=\\frac{d-1}{2}\\)</span>, strictly <span>\\(\\frac{1}{2}\\)</span>-derivative higher than the scaling-invariant index <span>\\(s=\\frac{d-2}{2}\\)</span>, the usually expected separation point.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well/Ill-Posedness of the Boltzmann Equation with Soft Potential\",\"authors\":\"Xuwen Chen,&nbsp;Shunlin Shen,&nbsp;Zhifei Zhang\",\"doi\":\"10.1007/s00220-024-05157-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the Boltzmann equation with the soft potential and angular cutoff. Inspired by the methods from dispersive PDEs, we establish its sharp local well-posedness and ill-posedness in <span>\\\\(H^{s}\\\\)</span> Sobolev space. We find the well/ill-posedness separation at regularity <span>\\\\(s=\\\\frac{d-1}{2}\\\\)</span>, strictly <span>\\\\(\\\\frac{1}{2}\\\\)</span>-derivative higher than the scaling-invariant index <span>\\\\(s=\\\\frac{d-2}{2}\\\\)</span>, the usually expected separation point.\\n</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 12\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05157-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05157-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了具有软势能和角截止的玻尔兹曼方程。受分散 PDEs 方法的启发,我们在 \(H^{s}\) Sobolev 空间中建立了其尖锐的局部好摆性和不好摆性。我们发现在正则性 \(s=\frac{d-1}{2}\)上的好/坏摆性分离,严格地 \(\frac{1}{2}\)-衍生物高于缩放不变指数 \(s=\frac{d-2}{2}\),即通常预期的分离点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well/Ill-Posedness of the Boltzmann Equation with Soft Potential

We consider the Boltzmann equation with the soft potential and angular cutoff. Inspired by the methods from dispersive PDEs, we establish its sharp local well-posedness and ill-posedness in \(H^{s}\) Sobolev space. We find the well/ill-posedness separation at regularity \(s=\frac{d-1}{2}\), strictly \(\frac{1}{2}\)-derivative higher than the scaling-invariant index \(s=\frac{d-2}{2}\), the usually expected separation point.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信