G. M. Koishina, E. A. Zholdasbay, A. A. Argyn, Yu. B. Icheva, M. B. Kurmanseitov, N. K. Dosmukhamedov
{"title":"用磁选法从电弧炉冶炼废金属的粉尘中提取铁","authors":"G. M. Koishina, E. A. Zholdasbay, A. A. Argyn, Yu. B. Icheva, M. B. Kurmanseitov, N. K. Dosmukhamedov","doi":"10.1007/s11015-024-01818-y","DOIUrl":null,"url":null,"abstract":"<div><p>This work extends the boundaries of a new technology for the complex processing of dust obtained from melting scrap metal in electric arc furnaces at a factory in Kazakhstan by extracting zinc and lead into commercial products. Comprehensive studies of the elemental and phase compositions of dust conducted using a JED-2300 scanning electron microscope showed high contents of zinc (more than 30%), lead (approximately 5%), and iron. A considerable part of the iron in the dust (up to 35%) is represented as magnetite. Because of the lack of rational processing technology, a large amount of dust has accumulated on the plant territory, which requires a solution for its disposal with complex extraction of precious metals.</p><p>The general concept of the technology under development is based on an approach that ensures the disposal of multicomponent ferrous metallurgy dust to obtain a wide range of commodity products with high added value. At the same time, the high content of iron present as magnetite demonstrates the effectiveness of isolating iron as an iron-containing commercial product at the beginning of the technological scheme.</p><p>This paper shows the fundamental possibility of separating iron from dust from the scrap metal melting in electric arc furnaces by magnetic separation. According to comprehensive studies, including the study of the material composition of the initial dust and magnetic separation products, magnetic dust separation produced an iron-containing product with a high (up to 68%) iron content. The residual minimum limit of the iron content in the nonmagnetic fraction in the form of magnetite has been established as 0.58%. Further processing of such material will considerably simplify the technology, reduce material costs, and improve product quality.</p></div>","PeriodicalId":702,"journal":{"name":"Metallurgist","volume":"68 7","pages":"1080 - 1086"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron extraction from dust from scrap metal smelting in electric arc furnaces by magnetic separation\",\"authors\":\"G. M. Koishina, E. A. Zholdasbay, A. A. Argyn, Yu. B. Icheva, M. B. Kurmanseitov, N. K. Dosmukhamedov\",\"doi\":\"10.1007/s11015-024-01818-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work extends the boundaries of a new technology for the complex processing of dust obtained from melting scrap metal in electric arc furnaces at a factory in Kazakhstan by extracting zinc and lead into commercial products. Comprehensive studies of the elemental and phase compositions of dust conducted using a JED-2300 scanning electron microscope showed high contents of zinc (more than 30%), lead (approximately 5%), and iron. A considerable part of the iron in the dust (up to 35%) is represented as magnetite. Because of the lack of rational processing technology, a large amount of dust has accumulated on the plant territory, which requires a solution for its disposal with complex extraction of precious metals.</p><p>The general concept of the technology under development is based on an approach that ensures the disposal of multicomponent ferrous metallurgy dust to obtain a wide range of commodity products with high added value. At the same time, the high content of iron present as magnetite demonstrates the effectiveness of isolating iron as an iron-containing commercial product at the beginning of the technological scheme.</p><p>This paper shows the fundamental possibility of separating iron from dust from the scrap metal melting in electric arc furnaces by magnetic separation. According to comprehensive studies, including the study of the material composition of the initial dust and magnetic separation products, magnetic dust separation produced an iron-containing product with a high (up to 68%) iron content. The residual minimum limit of the iron content in the nonmagnetic fraction in the form of magnetite has been established as 0.58%. Further processing of such material will considerably simplify the technology, reduce material costs, and improve product quality.</p></div>\",\"PeriodicalId\":702,\"journal\":{\"name\":\"Metallurgist\",\"volume\":\"68 7\",\"pages\":\"1080 - 1086\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgist\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11015-024-01818-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgist","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11015-024-01818-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Iron extraction from dust from scrap metal smelting in electric arc furnaces by magnetic separation
This work extends the boundaries of a new technology for the complex processing of dust obtained from melting scrap metal in electric arc furnaces at a factory in Kazakhstan by extracting zinc and lead into commercial products. Comprehensive studies of the elemental and phase compositions of dust conducted using a JED-2300 scanning electron microscope showed high contents of zinc (more than 30%), lead (approximately 5%), and iron. A considerable part of the iron in the dust (up to 35%) is represented as magnetite. Because of the lack of rational processing technology, a large amount of dust has accumulated on the plant territory, which requires a solution for its disposal with complex extraction of precious metals.
The general concept of the technology under development is based on an approach that ensures the disposal of multicomponent ferrous metallurgy dust to obtain a wide range of commodity products with high added value. At the same time, the high content of iron present as magnetite demonstrates the effectiveness of isolating iron as an iron-containing commercial product at the beginning of the technological scheme.
This paper shows the fundamental possibility of separating iron from dust from the scrap metal melting in electric arc furnaces by magnetic separation. According to comprehensive studies, including the study of the material composition of the initial dust and magnetic separation products, magnetic dust separation produced an iron-containing product with a high (up to 68%) iron content. The residual minimum limit of the iron content in the nonmagnetic fraction in the form of magnetite has been established as 0.58%. Further processing of such material will considerably simplify the technology, reduce material costs, and improve product quality.
期刊介绍:
Metallurgist is the leading Russian journal in metallurgy. Publication started in 1956.
Basic topics covered include:
State of the art and development of enterprises in ferrous and nonferrous metallurgy and mining;
Metallurgy of ferrous, nonferrous, rare, and precious metals; Metallurgical equipment;
Automation and control;
Protection of labor;
Protection of the environment;
Resources and energy saving;
Quality and certification;
History of metallurgy;
Inventions (patents).