Hwayeon Jeon, Jumin Youn, Jo Yong Park, Eui-Soon Yim, Jeong-Myeong Ha, Young-Kwon Park, Jae Woo Lee, Jae-Kon Kim
{"title":"根据老化试验评估从木材快速热解生物油中提取的混合生物喷气燃料的性能和成分","authors":"Hwayeon Jeon, Jumin Youn, Jo Yong Park, Eui-Soon Yim, Jeong-Myeong Ha, Young-Kwon Park, Jae Woo Lee, Jae-Kon Kim","doi":"10.1007/s11814-024-00309-9","DOIUrl":null,"url":null,"abstract":"<div><p>The aviation industry has set ambitious goals for reducing carbon emissions, with the International Civil Aviation Organization targeting net-zero carbon emissions by 2050. Bio-jet fuel is expected to play a crucial role in achieving this target, and the demand for bio-jet fuel is projected to rapidly increase. Bio-oil from fast pyrolysis of lignin, such as waste wood, is considered a promising alternative for production of bio-jet fuel through processes such as hydrodeoxygenation. In this study, the physical properties and compositions of bio-jet fuel produced from wood-derived pyrolysis bio-oil blended with petroleum-based jet fuel as well as their changes during 16 weeks storage were investigated. Consistently, 0%, 10%, 50%, and 100% blended bio-jet fuels were prepared. After 16 weeks of aging, the total acid number of the all-blended bio-jet fuel showed a sharp increase from 12 weeks, reaching over 0.1 mg KOH/g. Additionally, kinematic viscosity showed a steady increase over 16 weeks whereas oxidative stability decreased by approximately 20% at 16 weeks for the 100% bio-jet fuel alone. The final boiling point increased by up to 20% in higher blends of bio-jet fuel and the average molecular weight increased. Bio-jet fuel has a high olefin content, which can further increase during storage, leading to a decrease in the combustion characteristics. This study suggests that using up to 10% the bio-jet fuel in aircraft is safe considering storage stability, but further research is required to confirm this finding.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 13","pages":"3631 - 3646"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11814-024-00309-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Properties and Compositions of Blended Bio-jet Fuels Derived from Fast Pyrolysis Bio-oil made from Wood According to Aging Test\",\"authors\":\"Hwayeon Jeon, Jumin Youn, Jo Yong Park, Eui-Soon Yim, Jeong-Myeong Ha, Young-Kwon Park, Jae Woo Lee, Jae-Kon Kim\",\"doi\":\"10.1007/s11814-024-00309-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aviation industry has set ambitious goals for reducing carbon emissions, with the International Civil Aviation Organization targeting net-zero carbon emissions by 2050. Bio-jet fuel is expected to play a crucial role in achieving this target, and the demand for bio-jet fuel is projected to rapidly increase. Bio-oil from fast pyrolysis of lignin, such as waste wood, is considered a promising alternative for production of bio-jet fuel through processes such as hydrodeoxygenation. In this study, the physical properties and compositions of bio-jet fuel produced from wood-derived pyrolysis bio-oil blended with petroleum-based jet fuel as well as their changes during 16 weeks storage were investigated. Consistently, 0%, 10%, 50%, and 100% blended bio-jet fuels were prepared. After 16 weeks of aging, the total acid number of the all-blended bio-jet fuel showed a sharp increase from 12 weeks, reaching over 0.1 mg KOH/g. Additionally, kinematic viscosity showed a steady increase over 16 weeks whereas oxidative stability decreased by approximately 20% at 16 weeks for the 100% bio-jet fuel alone. The final boiling point increased by up to 20% in higher blends of bio-jet fuel and the average molecular weight increased. Bio-jet fuel has a high olefin content, which can further increase during storage, leading to a decrease in the combustion characteristics. This study suggests that using up to 10% the bio-jet fuel in aircraft is safe considering storage stability, but further research is required to confirm this finding.</p></div>\",\"PeriodicalId\":684,\"journal\":{\"name\":\"Korean Journal of Chemical Engineering\",\"volume\":\"41 13\",\"pages\":\"3631 - 3646\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11814-024-00309-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11814-024-00309-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00309-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluation of the Properties and Compositions of Blended Bio-jet Fuels Derived from Fast Pyrolysis Bio-oil made from Wood According to Aging Test
The aviation industry has set ambitious goals for reducing carbon emissions, with the International Civil Aviation Organization targeting net-zero carbon emissions by 2050. Bio-jet fuel is expected to play a crucial role in achieving this target, and the demand for bio-jet fuel is projected to rapidly increase. Bio-oil from fast pyrolysis of lignin, such as waste wood, is considered a promising alternative for production of bio-jet fuel through processes such as hydrodeoxygenation. In this study, the physical properties and compositions of bio-jet fuel produced from wood-derived pyrolysis bio-oil blended with petroleum-based jet fuel as well as their changes during 16 weeks storage were investigated. Consistently, 0%, 10%, 50%, and 100% blended bio-jet fuels were prepared. After 16 weeks of aging, the total acid number of the all-blended bio-jet fuel showed a sharp increase from 12 weeks, reaching over 0.1 mg KOH/g. Additionally, kinematic viscosity showed a steady increase over 16 weeks whereas oxidative stability decreased by approximately 20% at 16 weeks for the 100% bio-jet fuel alone. The final boiling point increased by up to 20% in higher blends of bio-jet fuel and the average molecular weight increased. Bio-jet fuel has a high olefin content, which can further increase during storage, leading to a decrease in the combustion characteristics. This study suggests that using up to 10% the bio-jet fuel in aircraft is safe considering storage stability, but further research is required to confirm this finding.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.