{"title":"评估 Ca3SbBr3 卤化物包光体在光伏领域的潜力:使用 GGA-PBE 和 HSE06 函数进行的结构、机械和光电研究","authors":"Krishna Kumar Mishra","doi":"10.1134/S1063783424601486","DOIUrl":null,"url":null,"abstract":"<p>In this study, we delve into the potential of the halide perovskite material Ca<sub>3</sub>SbBr<sub>3</sub> for solar cell applications, using QuantumATK simulation tool. By employing DFT with both GGA-PBE and HSE06 functionals, we thoroughly explored its structural, mechanical, electronic and optical properties. Our study reveals that Ca<sub>3</sub>SbBr<sub>3</sub> adopts a cubic crystal structure. The lattice constant for this structure is measured to be 6.336 Å. Notably, the material exhibits a direct band gap of 1.782 eV with GGA and 2.592 eV with HSE06, underscoring its efficiency in solar energy conversion. Moreover, Ca<sub>3</sub>SbBr<sub>3</sub> shows strong light absorption, with significant peaks at 629, 396 cm<sup>–1</sup> (3.52 eV) and 245, 951 cm<sup>–1</sup> (3.76 eV), and refractive indices of 2.10 (GGA) and 1.825 (HSE06). These results suggest that Ca<sub>3</sub>SbBr<sub>3</sub> holds great promise as a next-generation solar material, thanks to its advantageous electronic and optical properties.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"464 - 475"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Potential of Ca3SbBr3 Halide Perovskite for Photovoltaics: A Structural, Mechanical, and Optoelectronic Study Using GGA-PBE and HSE06 Functionals\",\"authors\":\"Krishna Kumar Mishra\",\"doi\":\"10.1134/S1063783424601486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we delve into the potential of the halide perovskite material Ca<sub>3</sub>SbBr<sub>3</sub> for solar cell applications, using QuantumATK simulation tool. By employing DFT with both GGA-PBE and HSE06 functionals, we thoroughly explored its structural, mechanical, electronic and optical properties. Our study reveals that Ca<sub>3</sub>SbBr<sub>3</sub> adopts a cubic crystal structure. The lattice constant for this structure is measured to be 6.336 Å. Notably, the material exhibits a direct band gap of 1.782 eV with GGA and 2.592 eV with HSE06, underscoring its efficiency in solar energy conversion. Moreover, Ca<sub>3</sub>SbBr<sub>3</sub> shows strong light absorption, with significant peaks at 629, 396 cm<sup>–1</sup> (3.52 eV) and 245, 951 cm<sup>–1</sup> (3.76 eV), and refractive indices of 2.10 (GGA) and 1.825 (HSE06). These results suggest that Ca<sub>3</sub>SbBr<sub>3</sub> holds great promise as a next-generation solar material, thanks to its advantageous electronic and optical properties.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":\"66 11\",\"pages\":\"464 - 475\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783424601486\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783424601486","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Evaluating the Potential of Ca3SbBr3 Halide Perovskite for Photovoltaics: A Structural, Mechanical, and Optoelectronic Study Using GGA-PBE and HSE06 Functionals
In this study, we delve into the potential of the halide perovskite material Ca3SbBr3 for solar cell applications, using QuantumATK simulation tool. By employing DFT with both GGA-PBE and HSE06 functionals, we thoroughly explored its structural, mechanical, electronic and optical properties. Our study reveals that Ca3SbBr3 adopts a cubic crystal structure. The lattice constant for this structure is measured to be 6.336 Å. Notably, the material exhibits a direct band gap of 1.782 eV with GGA and 2.592 eV with HSE06, underscoring its efficiency in solar energy conversion. Moreover, Ca3SbBr3 shows strong light absorption, with significant peaks at 629, 396 cm–1 (3.52 eV) and 245, 951 cm–1 (3.76 eV), and refractive indices of 2.10 (GGA) and 1.825 (HSE06). These results suggest that Ca3SbBr3 holds great promise as a next-generation solar material, thanks to its advantageous electronic and optical properties.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.