四元层状结构 Tl4In3GaS8 晶体的热电功率特性

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
Khairiah Alshehri
{"title":"四元层状结构 Tl4In3GaS8 晶体的热电功率特性","authors":"Khairiah Alshehri","doi":"10.1134/S1063783424601231","DOIUrl":null,"url":null,"abstract":"<p>A modified Bridgman technique was used to crystallize the Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> compound. The rate of change in the thermoelectric power (TEP) as a function of temperature of the Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> compound is measured within the temperature range (218–402 K). Measurements revealed that the conductivity of the crystals was n-type. Investigations were conducted into the connection between TEP, charge carrier concentration, and electrical conductivity. The experimental results were used to calculate a number of physical properties, including as mobilities, diffusion coefficients, diffusion lengths, effective masses, and carrier relaxation periods. The overall behavior of the semiconductor is shown by these features. According to our findings, asgrown Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> crystals are typically <i>n</i>-type and have the potential to be employed as thermoelectric power generating possibilities.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"516 - 520"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoelectric Power Characteristics of Quaternary Layered Structured Tl4In3GaS8 Crystals\",\"authors\":\"Khairiah Alshehri\",\"doi\":\"10.1134/S1063783424601231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A modified Bridgman technique was used to crystallize the Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> compound. The rate of change in the thermoelectric power (TEP) as a function of temperature of the Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> compound is measured within the temperature range (218–402 K). Measurements revealed that the conductivity of the crystals was n-type. Investigations were conducted into the connection between TEP, charge carrier concentration, and electrical conductivity. The experimental results were used to calculate a number of physical properties, including as mobilities, diffusion coefficients, diffusion lengths, effective masses, and carrier relaxation periods. The overall behavior of the semiconductor is shown by these features. According to our findings, asgrown Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> crystals are typically <i>n</i>-type and have the potential to be employed as thermoelectric power generating possibilities.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":\"66 11\",\"pages\":\"516 - 520\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783424601231\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783424601231","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

采用改良布里奇曼技术使 Tl4In3GaS8 化合物结晶。在温度范围(218-402 K)内,测量了 Tl4In3GaS8 化合物热电功率(TEP)随温度变化的速率。测量结果表明,晶体的导电性为 n 型。对 TEP、电荷载流子浓度和导电性之间的联系进行了研究。实验结果用于计算一系列物理特性,包括迁移率、扩散系数、扩散长度、有效质量和载流子弛豫期。这些特征显示了半导体的整体行为。根据我们的研究结果,asgrown Tl4In3GaS8 晶体是典型的 n 型,有可能用作热电发电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermoelectric Power Characteristics of Quaternary Layered Structured Tl4In3GaS8 Crystals

Thermoelectric Power Characteristics of Quaternary Layered Structured Tl4In3GaS8 Crystals

A modified Bridgman technique was used to crystallize the Tl4In3GaS8 compound. The rate of change in the thermoelectric power (TEP) as a function of temperature of the Tl4In3GaS8 compound is measured within the temperature range (218–402 K). Measurements revealed that the conductivity of the crystals was n-type. Investigations were conducted into the connection between TEP, charge carrier concentration, and electrical conductivity. The experimental results were used to calculate a number of physical properties, including as mobilities, diffusion coefficients, diffusion lengths, effective masses, and carrier relaxation periods. The overall behavior of the semiconductor is shown by these features. According to our findings, asgrown Tl4In3GaS8 crystals are typically n-type and have the potential to be employed as thermoelectric power generating possibilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Solid State
Physics of the Solid State 物理-物理:凝聚态物理
CiteScore
1.70
自引率
0.00%
发文量
60
审稿时长
2-4 weeks
期刊介绍: Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信