{"title":"四元层状结构 Tl4In3GaS8 晶体的热电功率特性","authors":"Khairiah Alshehri","doi":"10.1134/S1063783424601231","DOIUrl":null,"url":null,"abstract":"<p>A modified Bridgman technique was used to crystallize the Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> compound. The rate of change in the thermoelectric power (TEP) as a function of temperature of the Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> compound is measured within the temperature range (218–402 K). Measurements revealed that the conductivity of the crystals was n-type. Investigations were conducted into the connection between TEP, charge carrier concentration, and electrical conductivity. The experimental results were used to calculate a number of physical properties, including as mobilities, diffusion coefficients, diffusion lengths, effective masses, and carrier relaxation periods. The overall behavior of the semiconductor is shown by these features. According to our findings, asgrown Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> crystals are typically <i>n</i>-type and have the potential to be employed as thermoelectric power generating possibilities.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"516 - 520"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoelectric Power Characteristics of Quaternary Layered Structured Tl4In3GaS8 Crystals\",\"authors\":\"Khairiah Alshehri\",\"doi\":\"10.1134/S1063783424601231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A modified Bridgman technique was used to crystallize the Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> compound. The rate of change in the thermoelectric power (TEP) as a function of temperature of the Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> compound is measured within the temperature range (218–402 K). Measurements revealed that the conductivity of the crystals was n-type. Investigations were conducted into the connection between TEP, charge carrier concentration, and electrical conductivity. The experimental results were used to calculate a number of physical properties, including as mobilities, diffusion coefficients, diffusion lengths, effective masses, and carrier relaxation periods. The overall behavior of the semiconductor is shown by these features. According to our findings, asgrown Tl<sub>4</sub>In<sub>3</sub>GaS<sub>8</sub> crystals are typically <i>n</i>-type and have the potential to be employed as thermoelectric power generating possibilities.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":\"66 11\",\"pages\":\"516 - 520\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783424601231\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783424601231","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
采用改良布里奇曼技术使 Tl4In3GaS8 化合物结晶。在温度范围(218-402 K)内,测量了 Tl4In3GaS8 化合物热电功率(TEP)随温度变化的速率。测量结果表明,晶体的导电性为 n 型。对 TEP、电荷载流子浓度和导电性之间的联系进行了研究。实验结果用于计算一系列物理特性,包括迁移率、扩散系数、扩散长度、有效质量和载流子弛豫期。这些特征显示了半导体的整体行为。根据我们的研究结果,asgrown Tl4In3GaS8 晶体是典型的 n 型,有可能用作热电发电。
Thermoelectric Power Characteristics of Quaternary Layered Structured Tl4In3GaS8 Crystals
A modified Bridgman technique was used to crystallize the Tl4In3GaS8 compound. The rate of change in the thermoelectric power (TEP) as a function of temperature of the Tl4In3GaS8 compound is measured within the temperature range (218–402 K). Measurements revealed that the conductivity of the crystals was n-type. Investigations were conducted into the connection between TEP, charge carrier concentration, and electrical conductivity. The experimental results were used to calculate a number of physical properties, including as mobilities, diffusion coefficients, diffusion lengths, effective masses, and carrier relaxation periods. The overall behavior of the semiconductor is shown by these features. According to our findings, asgrown Tl4In3GaS8 crystals are typically n-type and have the potential to be employed as thermoelectric power generating possibilities.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.