不连续介质中传导热传输的随机漫步模型

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL
Elisa Baioni, Antoine Lejay, Géraldine Pichot, Giovanni Michele Porta
{"title":"不连续介质中传导热传输的随机漫步模型","authors":"Elisa Baioni,&nbsp;Antoine Lejay,&nbsp;Géraldine Pichot,&nbsp;Giovanni Michele Porta","doi":"10.1007/s11242-024-02132-6","DOIUrl":null,"url":null,"abstract":"<div><p>We consider heat transport within a discontinuous domain by relying on the modeling approach proposed by Baioni et al. Such approach has been specifically designed to address diffusive processes in media with discontinuous physical properties and generalized boundary conditions at the discontinuities. Three algorithms are here applied to estimate the conductive heat transport in a bimaterial medium. The algorithms undergo testing using two test cases that share the same computational domain but differ in terms of their initial conditions. According to the numerical results all the algorithms ensure the conservation of thermal energy and preserve thermal equilibrium under steady state conditions. The Generalized Uffink Method (GUM) and Generalized HYMLA demonstrate sensitivity to the choice of the time step, whereas the Generalized Skew Brownian Motion appears to be unaffected by the value of <span>\\(\\Delta t\\)</span>. The GUM algorithm presents an optimal trade-off between accuracy and computational time.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 14","pages":"2625 - 2645"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02132-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Random Walk Modeling of Conductive Heat Transport in Discontinuous Media\",\"authors\":\"Elisa Baioni,&nbsp;Antoine Lejay,&nbsp;Géraldine Pichot,&nbsp;Giovanni Michele Porta\",\"doi\":\"10.1007/s11242-024-02132-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider heat transport within a discontinuous domain by relying on the modeling approach proposed by Baioni et al. Such approach has been specifically designed to address diffusive processes in media with discontinuous physical properties and generalized boundary conditions at the discontinuities. Three algorithms are here applied to estimate the conductive heat transport in a bimaterial medium. The algorithms undergo testing using two test cases that share the same computational domain but differ in terms of their initial conditions. According to the numerical results all the algorithms ensure the conservation of thermal energy and preserve thermal equilibrium under steady state conditions. The Generalized Uffink Method (GUM) and Generalized HYMLA demonstrate sensitivity to the choice of the time step, whereas the Generalized Skew Brownian Motion appears to be unaffected by the value of <span>\\\\(\\\\Delta t\\\\)</span>. The GUM algorithm presents an optimal trade-off between accuracy and computational time.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":\"151 14\",\"pages\":\"2625 - 2645\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11242-024-02132-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-024-02132-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02132-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们采用 Baioni 等人提出的建模方法来考虑不连续域内的热传输问题。这种方法专门设计用于解决具有不连续物理特性和不连续处广义边界条件的介质中的扩散过程。本文采用了三种算法来估算双材料介质中的传导热传输。这些算法通过两个测试案例进行了测试,这两个案例的计算域相同,但初始条件不同。根据数值结果,所有算法都能确保热能守恒,并在稳态条件下保持热平衡。广义乌芬克方法(GUM)和广义 HYMLA 显示出对时间步长选择的敏感性,而广义偏斜布朗运动似乎不受 \(\Delta t\) 值的影响。GUM 算法在精确度和计算时间之间做出了最佳权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Walk Modeling of Conductive Heat Transport in Discontinuous Media

We consider heat transport within a discontinuous domain by relying on the modeling approach proposed by Baioni et al. Such approach has been specifically designed to address diffusive processes in media with discontinuous physical properties and generalized boundary conditions at the discontinuities. Three algorithms are here applied to estimate the conductive heat transport in a bimaterial medium. The algorithms undergo testing using two test cases that share the same computational domain but differ in terms of their initial conditions. According to the numerical results all the algorithms ensure the conservation of thermal energy and preserve thermal equilibrium under steady state conditions. The Generalized Uffink Method (GUM) and Generalized HYMLA demonstrate sensitivity to the choice of the time step, whereas the Generalized Skew Brownian Motion appears to be unaffected by the value of \(\Delta t\). The GUM algorithm presents an optimal trade-off between accuracy and computational time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信