Taeyong Ha, Yunmo Sung, Yongju Kwon, Sukyung Choi, Ho Jin, Sungjee Kim
{"title":"用于普鲁士蓝复合材料的亚铁氰化铁表面配体与量子点,显示出高效和可逆的电化学响应","authors":"Taeyong Ha, Yunmo Sung, Yongju Kwon, Sukyung Choi, Ho Jin, Sungjee Kim","doi":"10.1007/s11814-024-00302-2","DOIUrl":null,"url":null,"abstract":"<div><p>We employed a novel approach to fabricate quantum dot-in-Prussian blue analogue (QD-in-PBA) composites, encapsulating colloidal QDs into the electrical conducting metal organic framework PBA, which could provide a robust platform for efficient photochemical modulation of photoluminescence (PL) intensity. To achieve this, the surface of the QDs was engineered by attaching ferrocyanide ligands. This surface modification enabled the QDs to be seamlessly and uniformly incorporated into the PBA matrix. The ferrocyanide ligands on the QD surfaces played a pivotal role in initiating the <i>in-situ</i> formation of PBA, facilitated by the introduction of additional ferrocyanide ions and iron (III) ions as the building blocks of PBA. Alternatively applied external voltages to the QD-in-PBA electrode within an electrochemical cell demonstrated the reversible quenching and recovery of the PL intensity of the QDs embedded within the QD-in-PBA composite. Notably, we achieved the on/off modulation ratio over 7, which could be consistently repeated across multiple cycles. In contrast, the control sample, comprising a mixture of QDs and PBA, exhibited poor stability in terms of electrochemical performance, with a reduced modulation degree observed over repeating cycles. This diminished stability can be attributed to the fact that in the control sample, the QDs were merely attached to the surface of the PBA rather than being fully incorporated within the matrix and became redispersed into the electrolyte solution during the electrochemical reactions.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 13","pages":"3449 - 3459"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferrocyanide-Surface Ligands to Quantum Dots for Prussian Blue Composites Showing Efficient and Reversible Electrochemical Response\",\"authors\":\"Taeyong Ha, Yunmo Sung, Yongju Kwon, Sukyung Choi, Ho Jin, Sungjee Kim\",\"doi\":\"10.1007/s11814-024-00302-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We employed a novel approach to fabricate quantum dot-in-Prussian blue analogue (QD-in-PBA) composites, encapsulating colloidal QDs into the electrical conducting metal organic framework PBA, which could provide a robust platform for efficient photochemical modulation of photoluminescence (PL) intensity. To achieve this, the surface of the QDs was engineered by attaching ferrocyanide ligands. This surface modification enabled the QDs to be seamlessly and uniformly incorporated into the PBA matrix. The ferrocyanide ligands on the QD surfaces played a pivotal role in initiating the <i>in-situ</i> formation of PBA, facilitated by the introduction of additional ferrocyanide ions and iron (III) ions as the building blocks of PBA. Alternatively applied external voltages to the QD-in-PBA electrode within an electrochemical cell demonstrated the reversible quenching and recovery of the PL intensity of the QDs embedded within the QD-in-PBA composite. Notably, we achieved the on/off modulation ratio over 7, which could be consistently repeated across multiple cycles. In contrast, the control sample, comprising a mixture of QDs and PBA, exhibited poor stability in terms of electrochemical performance, with a reduced modulation degree observed over repeating cycles. This diminished stability can be attributed to the fact that in the control sample, the QDs were merely attached to the surface of the PBA rather than being fully incorporated within the matrix and became redispersed into the electrolyte solution during the electrochemical reactions.</p></div>\",\"PeriodicalId\":684,\"journal\":{\"name\":\"Korean Journal of Chemical Engineering\",\"volume\":\"41 13\",\"pages\":\"3449 - 3459\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11814-024-00302-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00302-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ferrocyanide-Surface Ligands to Quantum Dots for Prussian Blue Composites Showing Efficient and Reversible Electrochemical Response
We employed a novel approach to fabricate quantum dot-in-Prussian blue analogue (QD-in-PBA) composites, encapsulating colloidal QDs into the electrical conducting metal organic framework PBA, which could provide a robust platform for efficient photochemical modulation of photoluminescence (PL) intensity. To achieve this, the surface of the QDs was engineered by attaching ferrocyanide ligands. This surface modification enabled the QDs to be seamlessly and uniformly incorporated into the PBA matrix. The ferrocyanide ligands on the QD surfaces played a pivotal role in initiating the in-situ formation of PBA, facilitated by the introduction of additional ferrocyanide ions and iron (III) ions as the building blocks of PBA. Alternatively applied external voltages to the QD-in-PBA electrode within an electrochemical cell demonstrated the reversible quenching and recovery of the PL intensity of the QDs embedded within the QD-in-PBA composite. Notably, we achieved the on/off modulation ratio over 7, which could be consistently repeated across multiple cycles. In contrast, the control sample, comprising a mixture of QDs and PBA, exhibited poor stability in terms of electrochemical performance, with a reduced modulation degree observed over repeating cycles. This diminished stability can be attributed to the fact that in the control sample, the QDs were merely attached to the surface of the PBA rather than being fully incorporated within the matrix and became redispersed into the electrolyte solution during the electrochemical reactions.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.