Sang Bin Yoon, Sukyeong Hwang, Yerin Kim, Bong-Geun Kim, Hyon Bin Na
{"title":"制备可在水中分散的 Perovskite 量子点用于生物医学应用","authors":"Sang Bin Yoon, Sukyeong Hwang, Yerin Kim, Bong-Geun Kim, Hyon Bin Na","doi":"10.1007/s11814-024-00303-1","DOIUrl":null,"url":null,"abstract":"<p>This review highlights recent advancements in stabilizing perovskite-quantum dots (PQDs) for biomedical applications. PQDs like CsPbBr<sub>3</sub> nanoparticles are promising due to their high photoluminescence-quantum yield, narrow emission linewidth, and ability to control excitation and emission wavelengths, making them suitable for bioimaging and sensing applications. However, their instability in moist and aqueous environments and potential toxicity due to heavy metals like lead pose significant challenges. To address these issues, various surface-modification strategies, including encapsulation, ligand exchange, and phase transfer, have been developed. These methods aim to improve PQD stability and biocompatibility while preserving their optical properties. Encapsulation techniques using polymers, silica, and phospholipids have shown promise in maintaining PQD stability in aqueous solutions. Ligand-exchange strategies with multidentate and multifunctional ligands have enhanced PQD surface binding and hydrophilicity, improving their environmental robustness. Applications such as fluorescence cellular imaging, theragnostics, and immunoassays demonstrate the potential of stabilized PQDs in biomedical applications. Despite these advancements, further research is needed to develop non-toxic PQDs and ensure long-term stability. Continued progress in PQD synthesis and surface modification could lead to significant breakthroughs in biomedical research and clinical diagnostics.</p>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 13","pages":"3345 - 3357"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Water-Dispersible Perovskite-Quantum Dots for Biomedical Applications\",\"authors\":\"Sang Bin Yoon, Sukyeong Hwang, Yerin Kim, Bong-Geun Kim, Hyon Bin Na\",\"doi\":\"10.1007/s11814-024-00303-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This review highlights recent advancements in stabilizing perovskite-quantum dots (PQDs) for biomedical applications. PQDs like CsPbBr<sub>3</sub> nanoparticles are promising due to their high photoluminescence-quantum yield, narrow emission linewidth, and ability to control excitation and emission wavelengths, making them suitable for bioimaging and sensing applications. However, their instability in moist and aqueous environments and potential toxicity due to heavy metals like lead pose significant challenges. To address these issues, various surface-modification strategies, including encapsulation, ligand exchange, and phase transfer, have been developed. These methods aim to improve PQD stability and biocompatibility while preserving their optical properties. Encapsulation techniques using polymers, silica, and phospholipids have shown promise in maintaining PQD stability in aqueous solutions. Ligand-exchange strategies with multidentate and multifunctional ligands have enhanced PQD surface binding and hydrophilicity, improving their environmental robustness. Applications such as fluorescence cellular imaging, theragnostics, and immunoassays demonstrate the potential of stabilized PQDs in biomedical applications. Despite these advancements, further research is needed to develop non-toxic PQDs and ensure long-term stability. Continued progress in PQD synthesis and surface modification could lead to significant breakthroughs in biomedical research and clinical diagnostics.</p>\",\"PeriodicalId\":684,\"journal\":{\"name\":\"Korean Journal of Chemical Engineering\",\"volume\":\"41 13\",\"pages\":\"3345 - 3357\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11814-024-00303-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00303-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation of Water-Dispersible Perovskite-Quantum Dots for Biomedical Applications
This review highlights recent advancements in stabilizing perovskite-quantum dots (PQDs) for biomedical applications. PQDs like CsPbBr3 nanoparticles are promising due to their high photoluminescence-quantum yield, narrow emission linewidth, and ability to control excitation and emission wavelengths, making them suitable for bioimaging and sensing applications. However, their instability in moist and aqueous environments and potential toxicity due to heavy metals like lead pose significant challenges. To address these issues, various surface-modification strategies, including encapsulation, ligand exchange, and phase transfer, have been developed. These methods aim to improve PQD stability and biocompatibility while preserving their optical properties. Encapsulation techniques using polymers, silica, and phospholipids have shown promise in maintaining PQD stability in aqueous solutions. Ligand-exchange strategies with multidentate and multifunctional ligands have enhanced PQD surface binding and hydrophilicity, improving their environmental robustness. Applications such as fluorescence cellular imaging, theragnostics, and immunoassays demonstrate the potential of stabilized PQDs in biomedical applications. Despite these advancements, further research is needed to develop non-toxic PQDs and ensure long-term stability. Continued progress in PQD synthesis and surface modification could lead to significant breakthroughs in biomedical research and clinical diagnostics.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.