Jie Yang, Nuerbiye Aizez, Jiajun Ma, Gulimire Yaermaimaiti, Abduhalik Kadir, Xiaoning Wang, Huan An, Bumaliya Abulimiti, Mei Xiang
{"title":"外电场作用下 (AlN)12 簇的结构、红外光谱、热力学和激发特性变化研究","authors":"Jie Yang, Nuerbiye Aizez, Jiajun Ma, Gulimire Yaermaimaiti, Abduhalik Kadir, Xiaoning Wang, Huan An, Bumaliya Abulimiti, Mei Xiang","doi":"10.1140/epjd/s10053-024-00911-w","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, there has been a growing global interest in ultra-wide bandgap semiconductor materials, with aluminium nitride emerging as a particularly promising material. Using density-functional theory (DFT) at the CAM-B3LYP/6-311G(3d,2p) basis set level, we have systematically optimized the geometries of the (AlN)<sub>12</sub> cluster. Furthermore, the structural and thermodynamic changes of these clusters under the external electric field (EEF) were investigated. When the external electric field intensity increased the energy gap decreases continuously, infrared spectral analysis showed an obvious Stark effect, and the molecular structure showed significant alterations. Additionally, the study examined orbital compositions and excitation properties of twenty excited states using time-dependent density-functional theory (TD-DFT). The results indicated a decrease in excitation energy with increasing EEF, resulting in longer wavelengths and red-shifted spectral. These findings provide an opportunity to precisely modulate the electronic properties of (AlN)<sub>12</sub> cluster by controlling the strength and direction of the EEF, opening up more possibilities for their application in photoelectronic devices.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 11","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of structural, IR spectral, thermodynamics and excitation property alterations in (AlN)12 cluster under external electric fields\",\"authors\":\"Jie Yang, Nuerbiye Aizez, Jiajun Ma, Gulimire Yaermaimaiti, Abduhalik Kadir, Xiaoning Wang, Huan An, Bumaliya Abulimiti, Mei Xiang\",\"doi\":\"10.1140/epjd/s10053-024-00911-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, there has been a growing global interest in ultra-wide bandgap semiconductor materials, with aluminium nitride emerging as a particularly promising material. Using density-functional theory (DFT) at the CAM-B3LYP/6-311G(3d,2p) basis set level, we have systematically optimized the geometries of the (AlN)<sub>12</sub> cluster. Furthermore, the structural and thermodynamic changes of these clusters under the external electric field (EEF) were investigated. When the external electric field intensity increased the energy gap decreases continuously, infrared spectral analysis showed an obvious Stark effect, and the molecular structure showed significant alterations. Additionally, the study examined orbital compositions and excitation properties of twenty excited states using time-dependent density-functional theory (TD-DFT). The results indicated a decrease in excitation energy with increasing EEF, resulting in longer wavelengths and red-shifted spectral. These findings provide an opportunity to precisely modulate the electronic properties of (AlN)<sub>12</sub> cluster by controlling the strength and direction of the EEF, opening up more possibilities for their application in photoelectronic devices.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":789,\"journal\":{\"name\":\"The European Physical Journal D\",\"volume\":\"78 11\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal D\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjd/s10053-024-00911-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00911-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Investigation of structural, IR spectral, thermodynamics and excitation property alterations in (AlN)12 cluster under external electric fields
In recent years, there has been a growing global interest in ultra-wide bandgap semiconductor materials, with aluminium nitride emerging as a particularly promising material. Using density-functional theory (DFT) at the CAM-B3LYP/6-311G(3d,2p) basis set level, we have systematically optimized the geometries of the (AlN)12 cluster. Furthermore, the structural and thermodynamic changes of these clusters under the external electric field (EEF) were investigated. When the external electric field intensity increased the energy gap decreases continuously, infrared spectral analysis showed an obvious Stark effect, and the molecular structure showed significant alterations. Additionally, the study examined orbital compositions and excitation properties of twenty excited states using time-dependent density-functional theory (TD-DFT). The results indicated a decrease in excitation energy with increasing EEF, resulting in longer wavelengths and red-shifted spectral. These findings provide an opportunity to precisely modulate the electronic properties of (AlN)12 cluster by controlling the strength and direction of the EEF, opening up more possibilities for their application in photoelectronic devices.
期刊介绍:
The European Physical Journal D (EPJ D) presents new and original research results in:
Atomic Physics;
Molecular Physics and Chemical Physics;
Atomic and Molecular Collisions;
Clusters and Nanostructures;
Plasma Physics;
Laser Cooling and Quantum Gas;
Nonlinear Dynamics;
Optical Physics;
Quantum Optics and Quantum Information;
Ultraintense and Ultrashort Laser Fields.
The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.