统计学和机器学习中的内部可靠论:对大塚纯《统计学思考》的思考

Hanti Lin
{"title":"统计学和机器学习中的内部可靠论:对大塚纯《统计学思考》的思考","authors":"Hanti Lin","doi":"10.1007/s44204-024-00210-6","DOIUrl":null,"url":null,"abstract":"<div><p>Otsuka (2023) argues for a correspondence between data science and traditional epistemology: Bayesian statistics is internalist; classical (frequentist) statistics is externalist, owing to its reliabilist nature; model selection is pragmatist; and machine learning is a version of virtue epistemology. Where he sees diversity, I see an opportunity for unity. In this article, I argue that classical statistics, model selection, and machine learning share a foundation that is reliabilist in an unconventional sense that aligns with internalism. Hence a unification under internalist reliabilism.</p></div>","PeriodicalId":93890,"journal":{"name":"Asian journal of philosophy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internalist reliabilism in statistics and machine learning: thoughts on Jun Otsuka’s Thinking about Statistics\",\"authors\":\"Hanti Lin\",\"doi\":\"10.1007/s44204-024-00210-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Otsuka (2023) argues for a correspondence between data science and traditional epistemology: Bayesian statistics is internalist; classical (frequentist) statistics is externalist, owing to its reliabilist nature; model selection is pragmatist; and machine learning is a version of virtue epistemology. Where he sees diversity, I see an opportunity for unity. In this article, I argue that classical statistics, model selection, and machine learning share a foundation that is reliabilist in an unconventional sense that aligns with internalism. Hence a unification under internalist reliabilism.</p></div>\",\"PeriodicalId\":93890,\"journal\":{\"name\":\"Asian journal of philosophy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian journal of philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44204-024-00210-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian journal of philosophy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44204-024-00210-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Otsuka(2023 年)认为数据科学与传统认识论之间存在对应关系:贝叶斯统计学是内部主义的;经典(频繁主义)统计学由于其可靠主义的性质,是外部主义的;模型选择是实用主义的;而机器学习是美德认识论的一个版本。在他看到多样性的地方,我看到了统一的机会。在本文中,我认为经典统计学、模型选择和机器学习都有一个共同的基础,那就是与内部主义相一致的非常规意义上的可靠主义。因此,内在可靠论是统一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internalist reliabilism in statistics and machine learning: thoughts on Jun Otsuka’s Thinking about Statistics

Otsuka (2023) argues for a correspondence between data science and traditional epistemology: Bayesian statistics is internalist; classical (frequentist) statistics is externalist, owing to its reliabilist nature; model selection is pragmatist; and machine learning is a version of virtue epistemology. Where he sees diversity, I see an opportunity for unity. In this article, I argue that classical statistics, model selection, and machine learning share a foundation that is reliabilist in an unconventional sense that aligns with internalism. Hence a unification under internalist reliabilism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信