Robert A. Green-Warren, Andrew L. Fassler, Abigail Juhl, Noah M. McAllister, Andrew Huth, Maxim Arkhipov, Michael J. Grzenda, S. Rahman Pejman, Michael F. Durstock and Jonathan P. Singer
{"title":"多孔聚酰亚胺涂层的自限性电喷雾沉积 (SLED) 可用作有效的锂离子电池隔膜†。","authors":"Robert A. Green-Warren, Andrew L. Fassler, Abigail Juhl, Noah M. McAllister, Andrew Huth, Maxim Arkhipov, Michael J. Grzenda, S. Rahman Pejman, Michael F. Durstock and Jonathan P. Singer","doi":"10.1039/D4LP00192C","DOIUrl":null,"url":null,"abstract":"<p >Electrospray deposition (ESD) is employed to produce separator membranes for coin-cell lithium-ion batteries (LIBs) using off-the-shelf polyimide (PI). The PI coatings are deposited directly onto planar LiNi<small><sub>0.6</sub></small>Mn<small><sub>0.2</sub></small>Co<small><sub>0.2</sub></small>O<small><sub>2</sub></small> (NMC) electrodes <em>via</em> self-limiting electrospray deposition (SLED). Scanning electron microscopy (SEM), optical microscopy, and spectroscopic microreflectometry are implemented in combination to evaluate the porosity, thickness, and morphology of sprayed PI films. Furthermore, ultraviolet-visual wavelength spectroscopy (UV vis) is utilized to qualitatively assess variation in film porosity within a temperature range of 20–400 °C, to determine the stable temperature range of the separator. UV vis results underscore the ability of the SLED PI separator to maintain its porous microstructure up to ∼350 °C. Electrochemical performance of the PI separators is analyzed <em>via</em> charge/discharge cycle rate tests. Discharge capacities of the SLED PI separators are within 83–99.8% of commercial Celgard 2325 PP/PE/PP separators. This study points to the unique possibility of SLED as a separator manufacturing technique for geometrically complex energy storage systems. Further research is needed to optimize the polymer–solvent system to enhance control of porosity, pore size, and coating thickness. This can lead to significant improvement in rate and cycle life performance in more advanced energy storage devices.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 6","pages":" 1074-1081"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lp/d4lp00192c?page=search","citationCount":"0","resultStr":"{\"title\":\"Self-limiting electrospray deposition (SLED) of porous polyimide coatings as effective lithium-ion battery separator membranes†\",\"authors\":\"Robert A. Green-Warren, Andrew L. Fassler, Abigail Juhl, Noah M. McAllister, Andrew Huth, Maxim Arkhipov, Michael J. Grzenda, S. Rahman Pejman, Michael F. Durstock and Jonathan P. Singer\",\"doi\":\"10.1039/D4LP00192C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrospray deposition (ESD) is employed to produce separator membranes for coin-cell lithium-ion batteries (LIBs) using off-the-shelf polyimide (PI). The PI coatings are deposited directly onto planar LiNi<small><sub>0.6</sub></small>Mn<small><sub>0.2</sub></small>Co<small><sub>0.2</sub></small>O<small><sub>2</sub></small> (NMC) electrodes <em>via</em> self-limiting electrospray deposition (SLED). Scanning electron microscopy (SEM), optical microscopy, and spectroscopic microreflectometry are implemented in combination to evaluate the porosity, thickness, and morphology of sprayed PI films. Furthermore, ultraviolet-visual wavelength spectroscopy (UV vis) is utilized to qualitatively assess variation in film porosity within a temperature range of 20–400 °C, to determine the stable temperature range of the separator. UV vis results underscore the ability of the SLED PI separator to maintain its porous microstructure up to ∼350 °C. Electrochemical performance of the PI separators is analyzed <em>via</em> charge/discharge cycle rate tests. Discharge capacities of the SLED PI separators are within 83–99.8% of commercial Celgard 2325 PP/PE/PP separators. This study points to the unique possibility of SLED as a separator manufacturing technique for geometrically complex energy storage systems. Further research is needed to optimize the polymer–solvent system to enhance control of porosity, pore size, and coating thickness. This can lead to significant improvement in rate and cycle life performance in more advanced energy storage devices.</p>\",\"PeriodicalId\":101139,\"journal\":{\"name\":\"RSC Applied Polymers\",\"volume\":\" 6\",\"pages\":\" 1074-1081\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/lp/d4lp00192c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Applied Polymers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/lp/d4lp00192c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lp/d4lp00192c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
使用现成的聚酰亚胺 (PI) 通过电喷雾沉积 (ESD) 生产纽扣电池锂离子电池 (LIB) 的隔膜。PI 涂层通过自限制电喷雾沉积 (SLED) 直接沉积在平面 LiNi0.6Mn0.2Co0.2O2 (NMC) 电极上。扫描电子显微镜 (SEM)、光学显微镜和光谱微反射仪结合使用,可评估喷涂 PI 薄膜的孔隙率、厚度和形态。此外,还利用紫外可见光波长光谱法(UV vis)对 20-400 °C 温度范围内薄膜孔隙率的变化进行定性评估,以确定分离器的稳定温度范围。紫外可见光谱结果表明,SLED PI 分离器能够在 350 ℃ 以下保持其多孔微结构。通过充电/放电循环速率测试分析了 PI 分离器的电化学性能。SLED PI 分离器的放电容量在商用 Celgard 2325 PP/PE/PP 分离器的 83-99.8% 之间。这项研究表明,SLED 是一种独特的分离器制造技术,可用于几何形状复杂的储能系统。还需要进一步研究优化聚合物-溶剂系统,以加强对孔隙率、孔径和涂层厚度的控制。这将显著提高更先进储能设备的速率和循环寿命性能。
Self-limiting electrospray deposition (SLED) of porous polyimide coatings as effective lithium-ion battery separator membranes†
Electrospray deposition (ESD) is employed to produce separator membranes for coin-cell lithium-ion batteries (LIBs) using off-the-shelf polyimide (PI). The PI coatings are deposited directly onto planar LiNi0.6Mn0.2Co0.2O2 (NMC) electrodes via self-limiting electrospray deposition (SLED). Scanning electron microscopy (SEM), optical microscopy, and spectroscopic microreflectometry are implemented in combination to evaluate the porosity, thickness, and morphology of sprayed PI films. Furthermore, ultraviolet-visual wavelength spectroscopy (UV vis) is utilized to qualitatively assess variation in film porosity within a temperature range of 20–400 °C, to determine the stable temperature range of the separator. UV vis results underscore the ability of the SLED PI separator to maintain its porous microstructure up to ∼350 °C. Electrochemical performance of the PI separators is analyzed via charge/discharge cycle rate tests. Discharge capacities of the SLED PI separators are within 83–99.8% of commercial Celgard 2325 PP/PE/PP separators. This study points to the unique possibility of SLED as a separator manufacturing technique for geometrically complex energy storage systems. Further research is needed to optimize the polymer–solvent system to enhance control of porosity, pore size, and coating thickness. This can lead to significant improvement in rate and cycle life performance in more advanced energy storage devices.