S3E:用于协作式 SLAM 的多机器人多模态数据集

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Dapeng Feng;Yuhua Qi;Shipeng Zhong;Zhiqiang Chen;Qiming Chen;Hongbo Chen;Jin Wu;Jun Ma
{"title":"S3E:用于协作式 SLAM 的多机器人多模态数据集","authors":"Dapeng Feng;Yuhua Qi;Shipeng Zhong;Zhiqiang Chen;Qiming Chen;Hongbo Chen;Jin Wu;Jun Ma","doi":"10.1109/LRA.2024.3490402","DOIUrl":null,"url":null,"abstract":"The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11401-11408"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM\",\"authors\":\"Dapeng Feng;Yuhua Qi;Shipeng Zhong;Zhiqiang Chen;Qiming Chen;Hongbo Chen;Jin Wu;Jun Ma\",\"doi\":\"10.1109/LRA.2024.3490402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11401-11408\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740801/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740801/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

人们对协作机器人系统集体执行复杂任务的需求日益增长,因此研究界更加关注在协作环境中推进同步定位和绘图(SLAM)。尽管如此,现有协作轨迹数据集的可扩展性和多样性仍然有限,尤其是在视角受限的情况下,协作 SLAM(C-SLAM)的泛化能力对于多机器人任务的可行性至关重要。为了填补这一空白,我们引入了 S3E--一个广阔的多模态数据集。S3E 包含 13 个室外序列和 5 个室内序列,由穿越四种不同协作轨迹范例的无人地面飞行器编队拍摄。这些序列具有精心同步和空间校准的数据流,包括 360 度激光雷达点云、高分辨率立体图像、高频惯性测量单元 (IMU) 和超宽带 (UWB) 相对观测数据。我们的数据集不仅在规模、场景多样性和数据复杂性方面超越了以往的工作,而且还为协作式和单独的 SLAM 方法提供了全面的分析和基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM
The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信