利用天光极化模式约束进行视觉惯性定位

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Zhenhua Wan;Peng Fu;Kunfeng Wang;Kaichun Zhao
{"title":"利用天光极化模式约束进行视觉惯性定位","authors":"Zhenhua Wan;Peng Fu;Kunfeng Wang;Kaichun Zhao","doi":"10.1109/LRA.2024.3495375","DOIUrl":null,"url":null,"abstract":"In this letter, we develop a tightly coupled polarization-visual-inertial localization system that utilizes naturally-attributed polarized skylight to provide a global heading. We introduce a focal plane polarization camera with negligible instantaneous field-of-view error to collect polarized skylight. Then, we design a robust heading determination method from polarized skylight and construct a global stable heading constraint. In particular, this constraint compensates for the heading unobservability present in standard VINS. In addition to the standard sparse visual feature measurements used in VINS, polarization heading residuals are constructed and co-optimized in a tightly-coupled VINS update. An adaptive fusion strategy is designed to correct the cumulative drift. Outdoor real-world experiments show that the proposed method outperforms state-of-the-art VINS-Fusion in terms of localization accuracy, and improves 22% over VINS-Fusion in a wooded campus environment.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11481-11488"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints\",\"authors\":\"Zhenhua Wan;Peng Fu;Kunfeng Wang;Kaichun Zhao\",\"doi\":\"10.1109/LRA.2024.3495375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we develop a tightly coupled polarization-visual-inertial localization system that utilizes naturally-attributed polarized skylight to provide a global heading. We introduce a focal plane polarization camera with negligible instantaneous field-of-view error to collect polarized skylight. Then, we design a robust heading determination method from polarized skylight and construct a global stable heading constraint. In particular, this constraint compensates for the heading unobservability present in standard VINS. In addition to the standard sparse visual feature measurements used in VINS, polarization heading residuals are constructed and co-optimized in a tightly-coupled VINS update. An adaptive fusion strategy is designed to correct the cumulative drift. Outdoor real-world experiments show that the proposed method outperforms state-of-the-art VINS-Fusion in terms of localization accuracy, and improves 22% over VINS-Fusion in a wooded campus environment.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11481-11488\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10748383/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10748383/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们开发了一种紧密耦合的偏振-视觉-惯性定位系统,该系统利用自然分布的偏振天光来提供全球航向。我们引入了一个可忽略瞬时视场误差的焦平面偏振相机来收集偏振天光。然后,我们设计了一种利用偏振天光确定航向的稳健方法,并构建了一个全局稳定航向约束。特别是,该约束条件弥补了标准 VINS 中存在的航向不可观测性。除了 VINS 中使用的标准稀疏视觉特征测量之外,还构建了偏振航向残差,并在紧密耦合的 VINS 更新中进行了共同优化。设计了一种自适应融合策略来纠正累积漂移。户外实际实验表明,就定位精度而言,所提出的方法优于最先进的 VINS-融合方法,在树木繁茂的校园环境中,比 VINS-融合方法提高了 22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints
In this letter, we develop a tightly coupled polarization-visual-inertial localization system that utilizes naturally-attributed polarized skylight to provide a global heading. We introduce a focal plane polarization camera with negligible instantaneous field-of-view error to collect polarized skylight. Then, we design a robust heading determination method from polarized skylight and construct a global stable heading constraint. In particular, this constraint compensates for the heading unobservability present in standard VINS. In addition to the standard sparse visual feature measurements used in VINS, polarization heading residuals are constructed and co-optimized in a tightly-coupled VINS update. An adaptive fusion strategy is designed to correct the cumulative drift. Outdoor real-world experiments show that the proposed method outperforms state-of-the-art VINS-Fusion in terms of localization accuracy, and improves 22% over VINS-Fusion in a wooded campus environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信