灵巧机器手的双臂抓握合成技术

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Yanming Shao;Chenxi Xiao
{"title":"灵巧机器手的双臂抓握合成技术","authors":"Yanming Shao;Chenxi Xiao","doi":"10.1109/LRA.2024.3490393","DOIUrl":null,"url":null,"abstract":"Humans naturally perform bimanual skills to handle large and heavy objects. To enhance robots' object manipulation capabilities, generating effective bimanual grasp poses is essential. Nevertheless, bimanual grasp synthesis for dexterous hand manipulators remains underexplored. To bridge this gap, we propose the BimanGrasp algorithm for synthesizing bimanual grasps on 3D objects. The BimanGrasp algorithm generates grasp poses by optimizing an energy function that considers grasp stability and feasibility. Furthermore, the synthesized grasps are verified using the Isaac Gym physics simulation engine. These verified grasp poses form the BimanGrasp-Dataset, the first large-scale synthesized bimanual dexterous hand grasp pose dataset to our knowledge. The dataset comprises over 150k verified grasps on 900 objects, facilitating the synthesis of bimanual grasps through a data-driven approach. Last, we propose BimanGrasp-DDPM, a diffusion model trained on the BimanGrasp-Dataset. This model achieved a grasp synthesis success rate of 69.87% and significant acceleration in computational speed compared to BimanGrasp algorithm.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11377-11384"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bimanual Grasp Synthesis for Dexterous Robot Hands\",\"authors\":\"Yanming Shao;Chenxi Xiao\",\"doi\":\"10.1109/LRA.2024.3490393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans naturally perform bimanual skills to handle large and heavy objects. To enhance robots' object manipulation capabilities, generating effective bimanual grasp poses is essential. Nevertheless, bimanual grasp synthesis for dexterous hand manipulators remains underexplored. To bridge this gap, we propose the BimanGrasp algorithm for synthesizing bimanual grasps on 3D objects. The BimanGrasp algorithm generates grasp poses by optimizing an energy function that considers grasp stability and feasibility. Furthermore, the synthesized grasps are verified using the Isaac Gym physics simulation engine. These verified grasp poses form the BimanGrasp-Dataset, the first large-scale synthesized bimanual dexterous hand grasp pose dataset to our knowledge. The dataset comprises over 150k verified grasps on 900 objects, facilitating the synthesis of bimanual grasps through a data-driven approach. Last, we propose BimanGrasp-DDPM, a diffusion model trained on the BimanGrasp-Dataset. This model achieved a grasp synthesis success rate of 69.87% and significant acceleration in computational speed compared to BimanGrasp algorithm.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11377-11384\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740799/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740799/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

人类在处理大而重的物体时自然会使用双臂技能。为了提高机器人的物体操纵能力,生成有效的双臂抓握姿势至关重要。然而,针对灵巧手部机械手的双臂抓握合成仍未得到充分探索。为了弥补这一不足,我们提出了 BimanGrasp 算法,用于合成三维物体上的双臂抓握姿势。BimanGrasp 算法通过优化能量函数生成抓握姿势,该函数考虑了抓握的稳定性和可行性。此外,还使用 Isaac Gym 物理模拟引擎对合成的抓取姿势进行验证。这些经过验证的抓握姿势形成了 BimanGrasp 数据集,这是我们所知的首个大规模合成双灵巧手抓握姿势数据集。该数据集包含 900 个物体上超过 15 万个经过验证的抓取姿势,有助于通过数据驱动方法合成双手抓取姿势。最后,我们提出了在 BimanGrasp 数据集上训练的扩散模型 BimanGrasp-DDPM。与 BimanGrasp 算法相比,该模型的抓取合成成功率高达 69.87%,计算速度显著加快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bimanual Grasp Synthesis for Dexterous Robot Hands
Humans naturally perform bimanual skills to handle large and heavy objects. To enhance robots' object manipulation capabilities, generating effective bimanual grasp poses is essential. Nevertheless, bimanual grasp synthesis for dexterous hand manipulators remains underexplored. To bridge this gap, we propose the BimanGrasp algorithm for synthesizing bimanual grasps on 3D objects. The BimanGrasp algorithm generates grasp poses by optimizing an energy function that considers grasp stability and feasibility. Furthermore, the synthesized grasps are verified using the Isaac Gym physics simulation engine. These verified grasp poses form the BimanGrasp-Dataset, the first large-scale synthesized bimanual dexterous hand grasp pose dataset to our knowledge. The dataset comprises over 150k verified grasps on 900 objects, facilitating the synthesis of bimanual grasps through a data-driven approach. Last, we propose BimanGrasp-DDPM, a diffusion model trained on the BimanGrasp-Dataset. This model achieved a grasp synthesis success rate of 69.87% and significant acceleration in computational speed compared to BimanGrasp algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信