利用单纤维光镊进行低检测限微流量测量

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuan Sui;Xiankun Liu;Penghui Dai;Linzhi Yao;Yu Sun;Zhicheng Cong;Taiji Dong;Xu Liu;Hongda Jiang;Chunlei Jiang
{"title":"利用单纤维光镊进行低检测限微流量测量","authors":"Yuan Sui;Xiankun Liu;Penghui Dai;Linzhi Yao;Yu Sun;Zhicheng Cong;Taiji Dong;Xu Liu;Hongda Jiang;Chunlei Jiang","doi":"10.1109/JSEN.2024.3466975","DOIUrl":null,"url":null,"abstract":"With the rapid advancement of microfluidic technology, the precise measurement of microflows is critical in biomedical engineering, chemical analysis, and environmental monitoring. Current measurement methods often suffer from limited scalability and potential interference with fluid dynamics. This study introduces a low detection limit (DL) flow measurement method that uses single-fiber optical tweezers to capture individual silica microspheres outside a microcapillary as flow indicators. Under fluid flow, the microspheres exhibit microscale positional shifts within the optical trap. By analyzing these signal changes in real time, accurate flow measurements are achieved. Our experimental results demonstrate significant advantages in detecting low flow rates using this method. For sample solutions with a concentration of 0.05 wt.%, the method achieves a minimum flow DL of 6 nL/min, a linearity of 0.993, a sensitivity of \n<inline-formula> <tex-math>$- 14.36 \\; \\mu $ </tex-math></inline-formula>\ns/(nL/min), and a maximum standard deviation of approximately 0.092%. The piconewton-level optical force allows this sensor structure to detect extremely low flow rates. Additionally, the microcapillary provides a controlled and stable microflow environment, ensuring that the measurement process does not interfere with fluid flow, thereby reducing deviations.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"36838-36845"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Detection Limit Microflow Measurement Using Single-Fiber Optical Tweezers\",\"authors\":\"Yuan Sui;Xiankun Liu;Penghui Dai;Linzhi Yao;Yu Sun;Zhicheng Cong;Taiji Dong;Xu Liu;Hongda Jiang;Chunlei Jiang\",\"doi\":\"10.1109/JSEN.2024.3466975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid advancement of microfluidic technology, the precise measurement of microflows is critical in biomedical engineering, chemical analysis, and environmental monitoring. Current measurement methods often suffer from limited scalability and potential interference with fluid dynamics. This study introduces a low detection limit (DL) flow measurement method that uses single-fiber optical tweezers to capture individual silica microspheres outside a microcapillary as flow indicators. Under fluid flow, the microspheres exhibit microscale positional shifts within the optical trap. By analyzing these signal changes in real time, accurate flow measurements are achieved. Our experimental results demonstrate significant advantages in detecting low flow rates using this method. For sample solutions with a concentration of 0.05 wt.%, the method achieves a minimum flow DL of 6 nL/min, a linearity of 0.993, a sensitivity of \\n<inline-formula> <tex-math>$- 14.36 \\\\; \\\\mu $ </tex-math></inline-formula>\\ns/(nL/min), and a maximum standard deviation of approximately 0.092%. The piconewton-level optical force allows this sensor structure to detect extremely low flow rates. Additionally, the microcapillary provides a controlled and stable microflow environment, ensuring that the measurement process does not interfere with fluid flow, thereby reducing deviations.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 22\",\"pages\":\"36838-36845\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10704996/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10704996/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着微流体技术的快速发展,精确测量微流体对于生物医学工程、化学分析和环境监测至关重要。目前的测量方法往往存在可扩展性有限和可能干扰流体动力学的问题。本研究介绍了一种低检测限 (DL) 流量测量方法,该方法使用单纤维光镊捕捉微毛细管外的单个二氧化硅微球作为流量指示器。在流体流动时,微球会在光学阱内发生微尺度的位置移动。通过实时分析这些信号变化,可以实现精确的流量测量。我们的实验结果表明,使用这种方法在检测低流速方面具有显著优势。对于浓度为 0.05 wt.% 的样品溶液,该方法的最小流量 DL 为 6 nL/min,线性度为 0.993,灵敏度为 $- 14.36 \; \mu $ s/(nL/min),最大标准偏差约为 0.092%。皮牛顿级的光学力使这种传感器结构能够检测极低的流速。此外,微毛细管还提供了受控和稳定的微流环境,确保测量过程不会干扰流体流动,从而减少偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Detection Limit Microflow Measurement Using Single-Fiber Optical Tweezers
With the rapid advancement of microfluidic technology, the precise measurement of microflows is critical in biomedical engineering, chemical analysis, and environmental monitoring. Current measurement methods often suffer from limited scalability and potential interference with fluid dynamics. This study introduces a low detection limit (DL) flow measurement method that uses single-fiber optical tweezers to capture individual silica microspheres outside a microcapillary as flow indicators. Under fluid flow, the microspheres exhibit microscale positional shifts within the optical trap. By analyzing these signal changes in real time, accurate flow measurements are achieved. Our experimental results demonstrate significant advantages in detecting low flow rates using this method. For sample solutions with a concentration of 0.05 wt.%, the method achieves a minimum flow DL of 6 nL/min, a linearity of 0.993, a sensitivity of $- 14.36 \; \mu $ s/(nL/min), and a maximum standard deviation of approximately 0.092%. The piconewton-level optical force allows this sensor structure to detect extremely low flow rates. Additionally, the microcapillary provides a controlled and stable microflow environment, ensuring that the measurement process does not interfere with fluid flow, thereby reducing deviations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信