CMGFA:基于跨模态混合组注意特征聚合器的 BEV 细分模型

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Xinkai Kuang;Runxin Niu;Chen Hua;Chunmao Jiang;Hui Zhu;Ziyu Chen;Biao Yu
{"title":"CMGFA:基于跨模态混合组注意特征聚合器的 BEV 细分模型","authors":"Xinkai Kuang;Runxin Niu;Chen Hua;Chunmao Jiang;Hui Zhu;Ziyu Chen;Biao Yu","doi":"10.1109/LRA.2024.3495376","DOIUrl":null,"url":null,"abstract":"Bird's eye view (BEV) segmentation map is a recent development in autonomous driving that provides effective environmental information, such as drivable areas and lane dividers. Most of the existing methods use cameras and LiDAR as inputs for segmentation and the fusion of different modalities is accomplished through either concatenation or addition operations, which fails to exploit fully the correlation and complementarity between modalities. This letter presents the CMGFA (Cross-Modal Group-mix attention Feature Aggregator), an end-to-end learning framework that can adapt to multiple modal feature combinations for BEV segmentation. The CMGFA comprises the following components: i) The camera has a dual-branch structure that strengthens the linkage between local and global features. ii) Multi-head deformable cross-attention is applied as cross-modal feature aggregators to aggregate camera, LiDAR, and Radar feature maps in BEV for implicit fusion. iii) The Group-Mix attention is used to enrich the attention map feature space and enhance the ability to segment between different categories. We evaluate our proposed method on the nuScenes and Argoverse2 datasets, where the CMGFA significantly outperforms the baseline.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11497-11504"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator\",\"authors\":\"Xinkai Kuang;Runxin Niu;Chen Hua;Chunmao Jiang;Hui Zhu;Ziyu Chen;Biao Yu\",\"doi\":\"10.1109/LRA.2024.3495376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bird's eye view (BEV) segmentation map is a recent development in autonomous driving that provides effective environmental information, such as drivable areas and lane dividers. Most of the existing methods use cameras and LiDAR as inputs for segmentation and the fusion of different modalities is accomplished through either concatenation or addition operations, which fails to exploit fully the correlation and complementarity between modalities. This letter presents the CMGFA (Cross-Modal Group-mix attention Feature Aggregator), an end-to-end learning framework that can adapt to multiple modal feature combinations for BEV segmentation. The CMGFA comprises the following components: i) The camera has a dual-branch structure that strengthens the linkage between local and global features. ii) Multi-head deformable cross-attention is applied as cross-modal feature aggregators to aggregate camera, LiDAR, and Radar feature maps in BEV for implicit fusion. iii) The Group-Mix attention is used to enrich the attention map feature space and enhance the ability to segment between different categories. We evaluate our proposed method on the nuScenes and Argoverse2 datasets, where the CMGFA significantly outperforms the baseline.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11497-11504\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10749835/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10749835/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

鸟瞰(BEV)分割地图是自动驾驶领域的最新发展,可提供有效的环境信息,如可驾驶区域和车道分隔线。现有方法大多使用摄像头和激光雷达作为分割输入,不同模态的融合是通过串联或加法运算完成的,无法充分利用模态之间的相关性和互补性。这封信介绍了 CMGFA(跨模态组混合注意特征聚合器),这是一个端到端的学习框架,可以适应用于 BEV 细分的多种模态特征组合。CMGFA 由以下部分组成:i) 相机具有双分支结构,可加强局部特征与全局特征之间的联系;ii) 将多头可变形交叉注意力用作跨模态特征聚合器,以聚合 BEV 中的相机、激光雷达和雷达特征图,从而进行隐式融合;iii) 使用分组-混合注意力来丰富注意力图特征空间,并增强在不同类别之间进行分割的能力。我们在 nuScenes 和 Argoverse2 数据集上评估了我们提出的方法,CMGFA 明显优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator
Bird's eye view (BEV) segmentation map is a recent development in autonomous driving that provides effective environmental information, such as drivable areas and lane dividers. Most of the existing methods use cameras and LiDAR as inputs for segmentation and the fusion of different modalities is accomplished through either concatenation or addition operations, which fails to exploit fully the correlation and complementarity between modalities. This letter presents the CMGFA (Cross-Modal Group-mix attention Feature Aggregator), an end-to-end learning framework that can adapt to multiple modal feature combinations for BEV segmentation. The CMGFA comprises the following components: i) The camera has a dual-branch structure that strengthens the linkage between local and global features. ii) Multi-head deformable cross-attention is applied as cross-modal feature aggregators to aggregate camera, LiDAR, and Radar feature maps in BEV for implicit fusion. iii) The Group-Mix attention is used to enrich the attention map feature space and enhance the ability to segment between different categories. We evaluate our proposed method on the nuScenes and Argoverse2 datasets, where the CMGFA significantly outperforms the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信