用于液体电介质表征的高灵敏度双波段微流控传感器

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xueyun Han;Ke Liu;Siyu Zhang
{"title":"用于液体电介质表征的高灵敏度双波段微流控传感器","authors":"Xueyun Han;Ke Liu;Siyu Zhang","doi":"10.1109/JSEN.2024.3469529","DOIUrl":null,"url":null,"abstract":"The sensitivity and resolution are the crucial parameters for microwave (MW) microfluidic sensors in monitoring the concentration of binary liquid mixtures at low concentrations. This work proposes a miniaturized, reusable, high-sensitivity dual-frequency metamaterial microfluidic MW sensor with no-load resonance frequency points of 2.75 and 8.31 GHz for measuring the dielectric properties of liquid samples. The sensor comprises a microstrip transmission line (MTL) loaded with complementary split ring resonator (CSRR), which incorporates a bent groove structures to generate strong electric field (E-field) confinement within the CSRR. The polydimethylsiloxane (PDMS) microfluidic channels are designed based on the E-field distribution, allowing the loaded liquid samples to interact fully with the E-field. Given that the liquid sample’s complicated permittivity influences the magnitude of frequency shift and peak attenuation, a mathematical model is established according to the changes in \n<inline-formula> <tex-math>${S} _{{21}}$ </tex-math></inline-formula>\n for different concentrations of ethanol-aqueous solutions and is experimentally validated. The results indicate that using the variation in the difference between two resonant frequencies to obtain the liquid permittivity can eliminate environmental factors to a certain extent, accurately estimate the complex permittivity of the liquid, and thus achieve dual-band sensing of chemical dielectric properties. The average value of sensitivity and the size of the proposed sensor are 149.2 MHz/\n<inline-formula> <tex-math>$\\Delta \\varepsilon '$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$40\\times 30\\times 0.813$ </tex-math></inline-formula>\n mm3, respectively. This sensor provides beneficial support for dual-band sensing measurements of material dielectric characteristics.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"36689-36697"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Sensitivity Dual-Band Microfluidic Microwave Sensor for Liquid Dielectric Characterization\",\"authors\":\"Xueyun Han;Ke Liu;Siyu Zhang\",\"doi\":\"10.1109/JSEN.2024.3469529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sensitivity and resolution are the crucial parameters for microwave (MW) microfluidic sensors in monitoring the concentration of binary liquid mixtures at low concentrations. This work proposes a miniaturized, reusable, high-sensitivity dual-frequency metamaterial microfluidic MW sensor with no-load resonance frequency points of 2.75 and 8.31 GHz for measuring the dielectric properties of liquid samples. The sensor comprises a microstrip transmission line (MTL) loaded with complementary split ring resonator (CSRR), which incorporates a bent groove structures to generate strong electric field (E-field) confinement within the CSRR. The polydimethylsiloxane (PDMS) microfluidic channels are designed based on the E-field distribution, allowing the loaded liquid samples to interact fully with the E-field. Given that the liquid sample’s complicated permittivity influences the magnitude of frequency shift and peak attenuation, a mathematical model is established according to the changes in \\n<inline-formula> <tex-math>${S} _{{21}}$ </tex-math></inline-formula>\\n for different concentrations of ethanol-aqueous solutions and is experimentally validated. The results indicate that using the variation in the difference between two resonant frequencies to obtain the liquid permittivity can eliminate environmental factors to a certain extent, accurately estimate the complex permittivity of the liquid, and thus achieve dual-band sensing of chemical dielectric properties. The average value of sensitivity and the size of the proposed sensor are 149.2 MHz/\\n<inline-formula> <tex-math>$\\\\Delta \\\\varepsilon '$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$40\\\\times 30\\\\times 0.813$ </tex-math></inline-formula>\\n mm3, respectively. This sensor provides beneficial support for dual-band sensing measurements of material dielectric characteristics.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 22\",\"pages\":\"36689-36697\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10704986/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10704986/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

灵敏度和分辨率是微波(MW)微流体传感器监测低浓度二元液体混合物浓度的关键参数。本研究提出了一种微型、可重复使用、高灵敏度的双频超材料微流控微波传感器,其空载共振频率点分别为 2.75 和 8.31 GHz,用于测量液体样品的介电性质。该传感器由微带传输线(MTL)和互补分裂环谐振器(CSRR)组成,互补分裂环谐振器采用弯曲凹槽结构,可在 CSRR 内产生强电场(E-field)约束。聚二甲基硅氧烷(PDMS)微流体通道是根据电场分布设计的,可使装载的液体样品与电场充分互动。鉴于液体样品的复杂介电常数会影响频移和峰值衰减的大小,根据不同浓度乙醇水溶液中 ${S} _{{21}}$ 的变化建立了数学模型,并进行了实验验证。结果表明,利用两个共振频率之差的变化来获取液体的介电常数,可以在一定程度上消除环境因素的影响,准确估算液体的复介电常数,从而实现化学介电性质的双波段传感。该传感器的灵敏度平均值和体积分别为 149.2 MHz/ $\Delta \varepsilon '$ 和 $40/times 30/times 0.813$ mm3。该传感器为材料介电特性的双波段传感测量提供了有利支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Sensitivity Dual-Band Microfluidic Microwave Sensor for Liquid Dielectric Characterization
The sensitivity and resolution are the crucial parameters for microwave (MW) microfluidic sensors in monitoring the concentration of binary liquid mixtures at low concentrations. This work proposes a miniaturized, reusable, high-sensitivity dual-frequency metamaterial microfluidic MW sensor with no-load resonance frequency points of 2.75 and 8.31 GHz for measuring the dielectric properties of liquid samples. The sensor comprises a microstrip transmission line (MTL) loaded with complementary split ring resonator (CSRR), which incorporates a bent groove structures to generate strong electric field (E-field) confinement within the CSRR. The polydimethylsiloxane (PDMS) microfluidic channels are designed based on the E-field distribution, allowing the loaded liquid samples to interact fully with the E-field. Given that the liquid sample’s complicated permittivity influences the magnitude of frequency shift and peak attenuation, a mathematical model is established according to the changes in ${S} _{{21}}$ for different concentrations of ethanol-aqueous solutions and is experimentally validated. The results indicate that using the variation in the difference between two resonant frequencies to obtain the liquid permittivity can eliminate environmental factors to a certain extent, accurately estimate the complex permittivity of the liquid, and thus achieve dual-band sensing of chemical dielectric properties. The average value of sensitivity and the size of the proposed sensor are 149.2 MHz/ $\Delta \varepsilon '$ and $40\times 30\times 0.813$ mm3, respectively. This sensor provides beneficial support for dual-band sensing measurements of material dielectric characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信