基于权衡对比学习网络的高速列车制动片状态监测

IF 5.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Min Zhang;Jiamin Li;Jiliang Mo;Mingxue Shen;Zaiyu Xiang;Zhongrong Zhou
{"title":"基于权衡对比学习网络的高速列车制动片状态监测","authors":"Min Zhang;Jiamin Li;Jiliang Mo;Mingxue Shen;Zaiyu Xiang;Zhongrong Zhou","doi":"10.1109/TIM.2024.3485406","DOIUrl":null,"url":null,"abstract":"The braking system of high-speed trains is directly related to the operation safety of the train. The brake pads, which play a crucial role, will inevitably undergo uneven wear in long-term use, posing safety hazards to train braking. As the trains are in normal operating condition for long periods, it is difficult to collect usable uneven wear data, and there is a situation of data imbalance. This article proposes a trade-off contrastive learning network (TCLN), utilizing the differences between data and balancing the weights of different classes, which can realize the condition monitoring under the data imbalance of brake pads. First, data augmentation is employed to provide sufficient and diverse data for contrastive learning, and nonlinear features are extracted by a quadratic convolutional neural network (QCNN). Then, the designed class-weighted method is utilized to improve the characterization ability of the minority class data and realize the equidistant representation of features for each class, which in turn achieves the purpose of paying equal attention to all classes. Finally, the effectiveness of the proposed method is verified using the dataset collected from the scaling experiments, and the results show that the proposed method has higher accuracy and efficiency compared to other methods, which can still accurately identify the brake pad condition when the data are highly imbalanced.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"73 ","pages":"1-10"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Speed Train Brake Pads Condition Monitoring Based on Trade-Off Contrastive Learning Network\",\"authors\":\"Min Zhang;Jiamin Li;Jiliang Mo;Mingxue Shen;Zaiyu Xiang;Zhongrong Zhou\",\"doi\":\"10.1109/TIM.2024.3485406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The braking system of high-speed trains is directly related to the operation safety of the train. The brake pads, which play a crucial role, will inevitably undergo uneven wear in long-term use, posing safety hazards to train braking. As the trains are in normal operating condition for long periods, it is difficult to collect usable uneven wear data, and there is a situation of data imbalance. This article proposes a trade-off contrastive learning network (TCLN), utilizing the differences between data and balancing the weights of different classes, which can realize the condition monitoring under the data imbalance of brake pads. First, data augmentation is employed to provide sufficient and diverse data for contrastive learning, and nonlinear features are extracted by a quadratic convolutional neural network (QCNN). Then, the designed class-weighted method is utilized to improve the characterization ability of the minority class data and realize the equidistant representation of features for each class, which in turn achieves the purpose of paying equal attention to all classes. Finally, the effectiveness of the proposed method is verified using the dataset collected from the scaling experiments, and the results show that the proposed method has higher accuracy and efficiency compared to other methods, which can still accurately identify the brake pad condition when the data are highly imbalanced.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":\"73 \",\"pages\":\"1-10\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10745234/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10745234/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

高速列车的制动系统直接关系到列车的运行安全。起着关键作用的刹车片在长期使用中难免会出现不均匀磨损,给列车制动带来安全隐患。由于列车长期处于正常运行状态,很难收集到可用的不均匀磨损数据,存在数据不平衡的情况。本文提出了一种权衡对比学习网络(TCLN),利用数据之间的差异,平衡不同类的权重,可以实现刹车片数据不平衡情况下的状态监测。首先,采用数据增强技术为对比学习提供充足且多样化的数据,并通过二次卷积神经网络(QCNN)提取非线性特征。然后,利用所设计的类加权方法提高少数类数据的表征能力,实现各类特征的等距表示,从而达到对所有类同等关注的目的。最后,利用缩放实验收集的数据集验证了所提方法的有效性,结果表明,与其他方法相比,所提方法具有更高的准确性和效率,在数据高度不平衡的情况下仍能准确识别刹车片状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Speed Train Brake Pads Condition Monitoring Based on Trade-Off Contrastive Learning Network
The braking system of high-speed trains is directly related to the operation safety of the train. The brake pads, which play a crucial role, will inevitably undergo uneven wear in long-term use, posing safety hazards to train braking. As the trains are in normal operating condition for long periods, it is difficult to collect usable uneven wear data, and there is a situation of data imbalance. This article proposes a trade-off contrastive learning network (TCLN), utilizing the differences between data and balancing the weights of different classes, which can realize the condition monitoring under the data imbalance of brake pads. First, data augmentation is employed to provide sufficient and diverse data for contrastive learning, and nonlinear features are extracted by a quadratic convolutional neural network (QCNN). Then, the designed class-weighted method is utilized to improve the characterization ability of the minority class data and realize the equidistant representation of features for each class, which in turn achieves the purpose of paying equal attention to all classes. Finally, the effectiveness of the proposed method is verified using the dataset collected from the scaling experiments, and the results show that the proposed method has higher accuracy and efficiency compared to other methods, which can still accurately identify the brake pad condition when the data are highly imbalanced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信