{"title":"基于脑电信号的驾驶员认知架构:综述","authors":"Peiwen Mi;Lirong Yan;Yu Cheng;Yan Liu;Jun Wang;Muhammad Usman Shoukat;Fuwu Yan;Guofeng Qin;Peng Han;Yikang Zhai","doi":"10.1109/JSEN.2024.3471699","DOIUrl":null,"url":null,"abstract":"To improve the driving performance of vehicles, it is of great significance to study the changes in the driver’s brain cognition during driving and to establish an intelligent driving computational framework based on the cognitive process. Electroencephalogram (EEG) is an effective means to study driver cognition because of its low cost, high temporal resolution, and different cognitive state information. The application of brain-computer interface (BCI) technology based on EEG signals to driver assistance systems has the potential to transform the way humans interact with vehicles. It can also help intelligent vehicles to understand and predict driver’s behavior and to enhance the cognitive ability of vehicles. This article reviews the research on theorizing and modeling driver cognitive processes based on cognitive architectures (e.g., adaptive control for thoughtful rationality (ACT-R), queuing network (QN), and Soar) and proposes an EEG-based driver cognitive architecture. Then, according to the relationship between the modules of this proposed driver cognitive architecture, the driver’s perception of stationary and hazardous scenarios in the driving environment, the understanding of the driver’s intention to control the longitudinal and lateral movements of the vehicle, and the influence of driver’s working memory as well as human factors, such as fatigue, distraction, and emotion on driving performance based on EEG signals, are reviewed. The integration of EEG signals with cognitive modeling has the potential to improve the accuracy of driver perception, intention, and cognitive state prediction, thereby enhancing vehicle safety.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"36261-36286"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Driver Cognitive Architecture Based on EEG Signals: A Review\",\"authors\":\"Peiwen Mi;Lirong Yan;Yu Cheng;Yan Liu;Jun Wang;Muhammad Usman Shoukat;Fuwu Yan;Guofeng Qin;Peng Han;Yikang Zhai\",\"doi\":\"10.1109/JSEN.2024.3471699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the driving performance of vehicles, it is of great significance to study the changes in the driver’s brain cognition during driving and to establish an intelligent driving computational framework based on the cognitive process. Electroencephalogram (EEG) is an effective means to study driver cognition because of its low cost, high temporal resolution, and different cognitive state information. The application of brain-computer interface (BCI) technology based on EEG signals to driver assistance systems has the potential to transform the way humans interact with vehicles. It can also help intelligent vehicles to understand and predict driver’s behavior and to enhance the cognitive ability of vehicles. This article reviews the research on theorizing and modeling driver cognitive processes based on cognitive architectures (e.g., adaptive control for thoughtful rationality (ACT-R), queuing network (QN), and Soar) and proposes an EEG-based driver cognitive architecture. Then, according to the relationship between the modules of this proposed driver cognitive architecture, the driver’s perception of stationary and hazardous scenarios in the driving environment, the understanding of the driver’s intention to control the longitudinal and lateral movements of the vehicle, and the influence of driver’s working memory as well as human factors, such as fatigue, distraction, and emotion on driving performance based on EEG signals, are reviewed. The integration of EEG signals with cognitive modeling has the potential to improve the accuracy of driver perception, intention, and cognitive state prediction, thereby enhancing vehicle safety.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 22\",\"pages\":\"36261-36286\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706793/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10706793/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Driver Cognitive Architecture Based on EEG Signals: A Review
To improve the driving performance of vehicles, it is of great significance to study the changes in the driver’s brain cognition during driving and to establish an intelligent driving computational framework based on the cognitive process. Electroencephalogram (EEG) is an effective means to study driver cognition because of its low cost, high temporal resolution, and different cognitive state information. The application of brain-computer interface (BCI) technology based on EEG signals to driver assistance systems has the potential to transform the way humans interact with vehicles. It can also help intelligent vehicles to understand and predict driver’s behavior and to enhance the cognitive ability of vehicles. This article reviews the research on theorizing and modeling driver cognitive processes based on cognitive architectures (e.g., adaptive control for thoughtful rationality (ACT-R), queuing network (QN), and Soar) and proposes an EEG-based driver cognitive architecture. Then, according to the relationship between the modules of this proposed driver cognitive architecture, the driver’s perception of stationary and hazardous scenarios in the driving environment, the understanding of the driver’s intention to control the longitudinal and lateral movements of the vehicle, and the influence of driver’s working memory as well as human factors, such as fatigue, distraction, and emotion on driving performance based on EEG signals, are reviewed. The integration of EEG signals with cognitive modeling has the potential to improve the accuracy of driver perception, intention, and cognitive state prediction, thereby enhancing vehicle safety.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice