从低功耗物联网传感节点的接收功率统计估计运动统计

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Waltenegus Dargie
{"title":"从低功耗物联网传感节点的接收功率统计估计运动统计","authors":"Waltenegus Dargie","doi":"10.1109/LSENS.2024.3486582","DOIUrl":null,"url":null,"abstract":"Low-power Internet of Things (IoT) sensing nodes can be embedded into various physical environments to monitor vital parameters. Some of these environments impose rough and extreme operation conditions, severely limiting the performance of these nodes. Modeling these environments is vital to make the nodes adaptive. In this letter, we propose a model to estimate the complex motion of nodes deployed on the surface of different water bodies. The model relies on received power statistics only. Experimental results confirm that the model is reliable, achieving an estimation accuracy of 93%.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Motion Statistics From Statistics of Received Power in Low-Power IoT Sensing Nodes\",\"authors\":\"Waltenegus Dargie\",\"doi\":\"10.1109/LSENS.2024.3486582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-power Internet of Things (IoT) sensing nodes can be embedded into various physical environments to monitor vital parameters. Some of these environments impose rough and extreme operation conditions, severely limiting the performance of these nodes. Modeling these environments is vital to make the nodes adaptive. In this letter, we propose a model to estimate the complex motion of nodes deployed on the surface of different water bodies. The model relies on received power statistics only. Experimental results confirm that the model is reliable, achieving an estimation accuracy of 93%.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 12\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10735365/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10735365/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

低功耗物联网(IoT)传感节点可嵌入到各种物理环境中,以监测重要参数。其中一些环境会带来粗糙和极端的操作条件,严重限制了这些节点的性能。对这些环境进行建模对于提高节点的自适应能力至关重要。在这封信中,我们提出了一个模型,用于估计部署在不同水体表面的节点的复杂运动。该模型仅依赖于接收功率统计。实验结果证实,该模型是可靠的,估计准确率达到 93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Motion Statistics From Statistics of Received Power in Low-Power IoT Sensing Nodes
Low-power Internet of Things (IoT) sensing nodes can be embedded into various physical environments to monitor vital parameters. Some of these environments impose rough and extreme operation conditions, severely limiting the performance of these nodes. Modeling these environments is vital to make the nodes adaptive. In this letter, we propose a model to estimate the complex motion of nodes deployed on the surface of different water bodies. The model relies on received power statistics only. Experimental results confirm that the model is reliable, achieving an estimation accuracy of 93%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信