{"title":"GDO-SLAM:用于室外环境中 UGV 的基于视觉的地面感知解耦优化 SLAM","authors":"Chu Wu;Xu Li;Dong Kong;Yue Hu;Peizhou Ni","doi":"10.1109/JSEN.2024.3452114","DOIUrl":null,"url":null,"abstract":"Due to the homogeneity of the ground in outdoor scenes, i.e., self-similar textures, it is prone to cause inaccurate or even incorrect match of ground features. This mismatch inevitably introduces additional errors when calculating reprojection function, which in turn degrades the accuracy of simultaneous localization and mapping (SLAM). In this article, we propose a ground-aware decoupled optimized SLAM, called GDO-SLAM, which is essentially a pruning semantics-guided SLAM where a custom ground decoupling optimization module is introduced in the tracking and local mapping threads based on ORB-SLAM2. Essentially, the optimization module is a decoupling constraint that adds the weights of vertical observations of ground features and reduces the weights of horizontal observations in the reprojection error function. Specifically, we design a novel ground segmentation network that achieves an optimal balance between accuracy and real-time performance, and verify its ground category IoU of 98.6% on the urban landscape dataset. Extensive experiments on both the public KITTI dataset and our self-collected dataset demonstrate that our proposed ground-aware decoupling optimized SLAM (GDO-SLAM) outperforms the representative baseline ORB-SLAM2 in terms of translation and rotation accuracy by 7.5% and 8.3%, respectively.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"37218-37228"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GDO-SLAM: Visual-Based Ground-Aware Decoupling Optimized SLAM for UGV in Outdoor Environments\",\"authors\":\"Chu Wu;Xu Li;Dong Kong;Yue Hu;Peizhou Ni\",\"doi\":\"10.1109/JSEN.2024.3452114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the homogeneity of the ground in outdoor scenes, i.e., self-similar textures, it is prone to cause inaccurate or even incorrect match of ground features. This mismatch inevitably introduces additional errors when calculating reprojection function, which in turn degrades the accuracy of simultaneous localization and mapping (SLAM). In this article, we propose a ground-aware decoupled optimized SLAM, called GDO-SLAM, which is essentially a pruning semantics-guided SLAM where a custom ground decoupling optimization module is introduced in the tracking and local mapping threads based on ORB-SLAM2. Essentially, the optimization module is a decoupling constraint that adds the weights of vertical observations of ground features and reduces the weights of horizontal observations in the reprojection error function. Specifically, we design a novel ground segmentation network that achieves an optimal balance between accuracy and real-time performance, and verify its ground category IoU of 98.6% on the urban landscape dataset. Extensive experiments on both the public KITTI dataset and our self-collected dataset demonstrate that our proposed ground-aware decoupling optimized SLAM (GDO-SLAM) outperforms the representative baseline ORB-SLAM2 in terms of translation and rotation accuracy by 7.5% and 8.3%, respectively.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 22\",\"pages\":\"37218-37228\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706752/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10706752/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
GDO-SLAM: Visual-Based Ground-Aware Decoupling Optimized SLAM for UGV in Outdoor Environments
Due to the homogeneity of the ground in outdoor scenes, i.e., self-similar textures, it is prone to cause inaccurate or even incorrect match of ground features. This mismatch inevitably introduces additional errors when calculating reprojection function, which in turn degrades the accuracy of simultaneous localization and mapping (SLAM). In this article, we propose a ground-aware decoupled optimized SLAM, called GDO-SLAM, which is essentially a pruning semantics-guided SLAM where a custom ground decoupling optimization module is introduced in the tracking and local mapping threads based on ORB-SLAM2. Essentially, the optimization module is a decoupling constraint that adds the weights of vertical observations of ground features and reduces the weights of horizontal observations in the reprojection error function. Specifically, we design a novel ground segmentation network that achieves an optimal balance between accuracy and real-time performance, and verify its ground category IoU of 98.6% on the urban landscape dataset. Extensive experiments on both the public KITTI dataset and our self-collected dataset demonstrate that our proposed ground-aware decoupling optimized SLAM (GDO-SLAM) outperforms the representative baseline ORB-SLAM2 in terms of translation and rotation accuracy by 7.5% and 8.3%, respectively.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice