{"title":"计算系统发育树-子网络中的樱桃还原序列就是计算线性延伸。","authors":"Tomás M Coronado, Joan Carles Pons, Gabriel Riera","doi":"10.1007/s11538-024-01374-1","DOIUrl":null,"url":null,"abstract":"<p><p>Orchard and tree-child networks share an important property with phylogenetic trees: they can be completely reduced to a single node by iteratively deleting cherries and reticulated cherries. As it is the case with phylogenetic trees, the number of ways in which this can be done gives information about the topology of the network. Here, we show that the problem of computing this number in tree-child networks is akin to that of finding the number of linear extensions of the poset induced by each network, and give an algorithm based on this reduction whose complexity is bounded in terms of the level of the network.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 12","pages":"146"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550256/pdf/","citationCount":"0","resultStr":"{\"title\":\"Counting Cherry Reduction Sequences in Phylogenetic Tree-Child Networks is Counting Linear Extensions.\",\"authors\":\"Tomás M Coronado, Joan Carles Pons, Gabriel Riera\",\"doi\":\"10.1007/s11538-024-01374-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Orchard and tree-child networks share an important property with phylogenetic trees: they can be completely reduced to a single node by iteratively deleting cherries and reticulated cherries. As it is the case with phylogenetic trees, the number of ways in which this can be done gives information about the topology of the network. Here, we show that the problem of computing this number in tree-child networks is akin to that of finding the number of linear extensions of the poset induced by each network, and give an algorithm based on this reduction whose complexity is bounded in terms of the level of the network.</p>\",\"PeriodicalId\":9372,\"journal\":{\"name\":\"Bulletin of Mathematical Biology\",\"volume\":\"86 12\",\"pages\":\"146\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550256/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-024-01374-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01374-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Counting Cherry Reduction Sequences in Phylogenetic Tree-Child Networks is Counting Linear Extensions.
Orchard and tree-child networks share an important property with phylogenetic trees: they can be completely reduced to a single node by iteratively deleting cherries and reticulated cherries. As it is the case with phylogenetic trees, the number of ways in which this can be done gives information about the topology of the network. Here, we show that the problem of computing this number in tree-child networks is akin to that of finding the number of linear extensions of the poset induced by each network, and give an algorithm based on this reduction whose complexity is bounded in terms of the level of the network.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.