Hao Wang, Sisi Guo, Ruoyu Zhang, Jing Yao, Wen Tian, Jianfeng Wang
{"title":"无标签拉曼光谱鉴定甲状旁腺的可行性研究","authors":"Hao Wang, Sisi Guo, Ruoyu Zhang, Jing Yao, Wen Tian, Jianfeng Wang","doi":"10.1002/jbio.202400220","DOIUrl":null,"url":null,"abstract":"<p><p>We aim to evaluate the feasibility of Raman spectroscopy for parathyroid gland (PG) identification during thyroidectomy. Using a novel side-viewing handheld Raman probe, a total of 324 Raman spectra of four tissue types (i.e., thyroid, lymph node, PG, and lipid) commonly encountered during thyroidectomy were rapidly (< 3 s) acquired from 80 tissue sites (thyroid [n = 10], lymph node [n = 10], PG [n = 40], lipid [n = 20]) of 10 euthanized Wistar rats. Two partial least-squares (PLS)-discriminant analysis (DA) detection models were developed, differentiating the lipid and nonlipid (i.e., thyroid, lymph node, and PG) tissues with an accuracy of 100%, and PG, lymph node, and thyroid could be detected with an accuracy of 98.4%, 93.9%, and 95.4% respectively. This work demonstrates the feasibility of Raman spectroscopy technique for PG identification and protection during thyroidectomy at the molecular level.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400220"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility Study of Label-Free Raman Spectroscopy for Parathyroid Gland Identification.\",\"authors\":\"Hao Wang, Sisi Guo, Ruoyu Zhang, Jing Yao, Wen Tian, Jianfeng Wang\",\"doi\":\"10.1002/jbio.202400220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We aim to evaluate the feasibility of Raman spectroscopy for parathyroid gland (PG) identification during thyroidectomy. Using a novel side-viewing handheld Raman probe, a total of 324 Raman spectra of four tissue types (i.e., thyroid, lymph node, PG, and lipid) commonly encountered during thyroidectomy were rapidly (< 3 s) acquired from 80 tissue sites (thyroid [n = 10], lymph node [n = 10], PG [n = 40], lipid [n = 20]) of 10 euthanized Wistar rats. Two partial least-squares (PLS)-discriminant analysis (DA) detection models were developed, differentiating the lipid and nonlipid (i.e., thyroid, lymph node, and PG) tissues with an accuracy of 100%, and PG, lymph node, and thyroid could be detected with an accuracy of 98.4%, 93.9%, and 95.4% respectively. This work demonstrates the feasibility of Raman spectroscopy technique for PG identification and protection during thyroidectomy at the molecular level.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202400220\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202400220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feasibility Study of Label-Free Raman Spectroscopy for Parathyroid Gland Identification.
We aim to evaluate the feasibility of Raman spectroscopy for parathyroid gland (PG) identification during thyroidectomy. Using a novel side-viewing handheld Raman probe, a total of 324 Raman spectra of four tissue types (i.e., thyroid, lymph node, PG, and lipid) commonly encountered during thyroidectomy were rapidly (< 3 s) acquired from 80 tissue sites (thyroid [n = 10], lymph node [n = 10], PG [n = 40], lipid [n = 20]) of 10 euthanized Wistar rats. Two partial least-squares (PLS)-discriminant analysis (DA) detection models were developed, differentiating the lipid and nonlipid (i.e., thyroid, lymph node, and PG) tissues with an accuracy of 100%, and PG, lymph node, and thyroid could be detected with an accuracy of 98.4%, 93.9%, and 95.4% respectively. This work demonstrates the feasibility of Raman spectroscopy technique for PG identification and protection during thyroidectomy at the molecular level.