基于学习的工业自动移动机器人无地图导航的启发式密集奖励塑造。

Yizhi Wang, Yongfang Xie, Degang Xu, Jiahui Shi, Shiyu Fang, Weihua Gui
{"title":"基于学习的工业自动移动机器人无地图导航的启发式密集奖励塑造。","authors":"Yizhi Wang, Yongfang Xie, Degang Xu, Jiahui Shi, Shiyu Fang, Weihua Gui","doi":"10.1016/j.isatra.2024.10.026","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a map-free navigation approach for industrial automatic mobile robots (AMRs), designed to ensure computational efficiency, cost-effectiveness, and adaptability. Utilizing deep reinforcement learning (DRL), the system enables real-time decision-making without fixed markers or frequent map updates. The central contribution is the Heuristic Dense Reward Shaping (HDRS), inspired by potential field methods, which integrates domain knowledge to improve learning efficiency and minimize suboptimal actions. To address the simulation-to-reality gap, data augmentation with controlled sensor noise is applied during training, ensuring robustness and generalization for real-world deployment without fine-tuning. Training results underscore HDRS's superior convergence speed, training stability, and policy learning efficiency compared to baselines. Simulation and real-world evaluations establish HDRS-DRL as a competitive alternative, outperforming traditional approaches, and offering practical applicability in industrial settings.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heuristic dense reward shaping for learning-based map-free navigation of industrial automatic mobile robots.\",\"authors\":\"Yizhi Wang, Yongfang Xie, Degang Xu, Jiahui Shi, Shiyu Fang, Weihua Gui\",\"doi\":\"10.1016/j.isatra.2024.10.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a map-free navigation approach for industrial automatic mobile robots (AMRs), designed to ensure computational efficiency, cost-effectiveness, and adaptability. Utilizing deep reinforcement learning (DRL), the system enables real-time decision-making without fixed markers or frequent map updates. The central contribution is the Heuristic Dense Reward Shaping (HDRS), inspired by potential field methods, which integrates domain knowledge to improve learning efficiency and minimize suboptimal actions. To address the simulation-to-reality gap, data augmentation with controlled sensor noise is applied during training, ensuring robustness and generalization for real-world deployment without fine-tuning. Training results underscore HDRS's superior convergence speed, training stability, and policy learning efficiency compared to baselines. Simulation and real-world evaluations establish HDRS-DRL as a competitive alternative, outperforming traditional approaches, and offering practical applicability in industrial settings.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2024.10.026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.10.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于工业自动移动机器人(AMR)的无地图导航方法,旨在确保计算效率、成本效益和适应性。该系统利用深度强化学习(DRL),在没有固定标记或频繁更新地图的情况下实现实时决策。该系统的核心贡献是启发式密集奖励塑造(HDRS),其灵感来源于潜在领域方法,它整合了领域知识,以提高学习效率并最大限度地减少次优行动。为了解决模拟与现实之间的差距,在训练过程中使用了受控传感器噪声进行数据增强,从而确保了无需微调即可在现实世界中部署的鲁棒性和通用性。训练结果表明,与基线相比,HDRS 的收敛速度、训练稳定性和策略学习效率都更胜一筹。仿真和实际评估结果表明,HDRS-DRL 是一种具有竞争力的替代方案,其性能优于传统方法,可实际应用于工业环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heuristic dense reward shaping for learning-based map-free navigation of industrial automatic mobile robots.

This paper presents a map-free navigation approach for industrial automatic mobile robots (AMRs), designed to ensure computational efficiency, cost-effectiveness, and adaptability. Utilizing deep reinforcement learning (DRL), the system enables real-time decision-making without fixed markers or frequent map updates. The central contribution is the Heuristic Dense Reward Shaping (HDRS), inspired by potential field methods, which integrates domain knowledge to improve learning efficiency and minimize suboptimal actions. To address the simulation-to-reality gap, data augmentation with controlled sensor noise is applied during training, ensuring robustness and generalization for real-world deployment without fine-tuning. Training results underscore HDRS's superior convergence speed, training stability, and policy learning efficiency compared to baselines. Simulation and real-world evaluations establish HDRS-DRL as a competitive alternative, outperforming traditional approaches, and offering practical applicability in industrial settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信