Junqi Yang , Yumin Ma , Jiang Liu , Qingtian Zhu , Rui Zhou , Chenchen Yuan , Yanbing Ding , Weiming Xiao , Weijuan Gong , Qing Shan , Guotao Lu , Hongwei Xu
{"title":"基于生物信息学鉴定和验证胰腺β细胞衰老过程中的关键调控转录因子YY1。","authors":"Junqi Yang , Yumin Ma , Jiang Liu , Qingtian Zhu , Rui Zhou , Chenchen Yuan , Yanbing Ding , Weiming Xiao , Weijuan Gong , Qing Shan , Guotao Lu , Hongwei Xu","doi":"10.1016/j.exger.2024.112633","DOIUrl":null,"url":null,"abstract":"<div><div>The aging of pancreatic beta cells is closely associated with various diseases, such as impaired glucose tolerance, yet the underlying regulatory mechanisms remain unclear. In this study, we screened young and aged mouse pancreatic beta cells' high-throughput sequencing data from the GEO public database. Utilizing bioinformatics techniques, we identified the key regulatory factor YY1 in the aging process of pancreatic islets. We observed a significant decrease in the expression of YY1 in a D-gal-induced mouse model of pancreatic aging and an H<sub>2</sub>O<sub>2</sub>-induced MIN6 cell model of aging. Moreover, both vivo and vitro models, we found that the YY1 agonist eudesmin (EDN) improved glucose intolerance in mice, alleviated aging of pancreatic beta cells, and downregulated the expression of cell cycle protein P21. Mechanistically, we discovered that EDN inhibited the P38/JNK MAPK pathway in aging cells. In summary, our study confirms the regulatory role of the transcription factor YY1 in the aging process of pancreatic beta cells. This finding may provide a new approach for the clinical treatment of pancreatic aging-related diseases such as impaired glucose tolerance or diabetes.</div></div>","PeriodicalId":94003,"journal":{"name":"Experimental gerontology","volume":"198 ","pages":"Article 112633"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying and validating the key regulatory transcription factor YY1 in the aging process of pancreatic beta cells based on bioinformatics\",\"authors\":\"Junqi Yang , Yumin Ma , Jiang Liu , Qingtian Zhu , Rui Zhou , Chenchen Yuan , Yanbing Ding , Weiming Xiao , Weijuan Gong , Qing Shan , Guotao Lu , Hongwei Xu\",\"doi\":\"10.1016/j.exger.2024.112633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aging of pancreatic beta cells is closely associated with various diseases, such as impaired glucose tolerance, yet the underlying regulatory mechanisms remain unclear. In this study, we screened young and aged mouse pancreatic beta cells' high-throughput sequencing data from the GEO public database. Utilizing bioinformatics techniques, we identified the key regulatory factor YY1 in the aging process of pancreatic islets. We observed a significant decrease in the expression of YY1 in a D-gal-induced mouse model of pancreatic aging and an H<sub>2</sub>O<sub>2</sub>-induced MIN6 cell model of aging. Moreover, both vivo and vitro models, we found that the YY1 agonist eudesmin (EDN) improved glucose intolerance in mice, alleviated aging of pancreatic beta cells, and downregulated the expression of cell cycle protein P21. Mechanistically, we discovered that EDN inhibited the P38/JNK MAPK pathway in aging cells. In summary, our study confirms the regulatory role of the transcription factor YY1 in the aging process of pancreatic beta cells. This finding may provide a new approach for the clinical treatment of pancreatic aging-related diseases such as impaired glucose tolerance or diabetes.</div></div>\",\"PeriodicalId\":94003,\"journal\":{\"name\":\"Experimental gerontology\",\"volume\":\"198 \",\"pages\":\"Article 112633\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental gerontology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0531556524002791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental gerontology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0531556524002791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying and validating the key regulatory transcription factor YY1 in the aging process of pancreatic beta cells based on bioinformatics
The aging of pancreatic beta cells is closely associated with various diseases, such as impaired glucose tolerance, yet the underlying regulatory mechanisms remain unclear. In this study, we screened young and aged mouse pancreatic beta cells' high-throughput sequencing data from the GEO public database. Utilizing bioinformatics techniques, we identified the key regulatory factor YY1 in the aging process of pancreatic islets. We observed a significant decrease in the expression of YY1 in a D-gal-induced mouse model of pancreatic aging and an H2O2-induced MIN6 cell model of aging. Moreover, both vivo and vitro models, we found that the YY1 agonist eudesmin (EDN) improved glucose intolerance in mice, alleviated aging of pancreatic beta cells, and downregulated the expression of cell cycle protein P21. Mechanistically, we discovered that EDN inhibited the P38/JNK MAPK pathway in aging cells. In summary, our study confirms the regulatory role of the transcription factor YY1 in the aging process of pancreatic beta cells. This finding may provide a new approach for the clinical treatment of pancreatic aging-related diseases such as impaired glucose tolerance or diabetes.