{"title":"用果蝇探索巨噬细胞组织浸润的机制","authors":"Daria E Siekhaus , Jasmine A Stanley-Ahmed","doi":"10.1016/j.coi.2024.102502","DOIUrl":null,"url":null,"abstract":"<div><div>Much is known about the importance of macrophages for regulating diverse aspects of organismal physiology, alongside their essential roles in inflammation. Relatively unexplored are the processes influencing macrophages’ and monocytes’ ability to invade into the tissues where they carry out these functions. <em>Drosophila</em> plasmatocytes, also called hemocytes, show similarities to vertebrate macrophages in their function and their molecular specification; they have recently been shown to also infiltrate into tissues during development and inflammation. Extravasation across vasculature, into tumors, the brain, and adipose tissue have all been observed. We discuss the striking parallels in some of these systems to vertebrate immune responses, including a requirement for tumor necrosis factor. Finally, we highlight the new pathways regulating infiltration found in the fly that remain as yet unexamined in a vertebrate context.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":"91 ","pages":"Article 102502"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering mechanisms of macrophage tissue infiltration with Drosophila\",\"authors\":\"Daria E Siekhaus , Jasmine A Stanley-Ahmed\",\"doi\":\"10.1016/j.coi.2024.102502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Much is known about the importance of macrophages for regulating diverse aspects of organismal physiology, alongside their essential roles in inflammation. Relatively unexplored are the processes influencing macrophages’ and monocytes’ ability to invade into the tissues where they carry out these functions. <em>Drosophila</em> plasmatocytes, also called hemocytes, show similarities to vertebrate macrophages in their function and their molecular specification; they have recently been shown to also infiltrate into tissues during development and inflammation. Extravasation across vasculature, into tumors, the brain, and adipose tissue have all been observed. We discuss the striking parallels in some of these systems to vertebrate immune responses, including a requirement for tumor necrosis factor. Finally, we highlight the new pathways regulating infiltration found in the fly that remain as yet unexamined in a vertebrate context.</div></div>\",\"PeriodicalId\":11361,\"journal\":{\"name\":\"Current Opinion in Immunology\",\"volume\":\"91 \",\"pages\":\"Article 102502\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095279152400092X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095279152400092X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Discovering mechanisms of macrophage tissue infiltration with Drosophila
Much is known about the importance of macrophages for regulating diverse aspects of organismal physiology, alongside their essential roles in inflammation. Relatively unexplored are the processes influencing macrophages’ and monocytes’ ability to invade into the tissues where they carry out these functions. Drosophila plasmatocytes, also called hemocytes, show similarities to vertebrate macrophages in their function and their molecular specification; they have recently been shown to also infiltrate into tissues during development and inflammation. Extravasation across vasculature, into tumors, the brain, and adipose tissue have all been observed. We discuss the striking parallels in some of these systems to vertebrate immune responses, including a requirement for tumor necrosis factor. Finally, we highlight the new pathways regulating infiltration found in the fly that remain as yet unexamined in a vertebrate context.
期刊介绍:
Current Opinion in Immunology aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Immunology we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
Current Opinion in Immunology will serve as an invaluable source of information for researchers, lecturers, teachers, professionals, policy makers and students.
Current Opinion in Immunology builds on Elsevier''s reputation for excellence in scientific publishing and long-standing commitment to communicating reproducible biomedical research targeted at improving human health. It is a companion to the new Gold Open Access journal Current Research in Immunology and is part of the Current Opinion and Research(CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists'' workflow.