主调控因子 OxyR 在空间和时间上协调细菌氧化应激反应基因。

Divya Choudhary, Kevin R Foster, Stephan Uphoff
{"title":"主调控因子 OxyR 在空间和时间上协调细菌氧化应激反应基因。","authors":"Divya Choudhary, Kevin R Foster, Stephan Uphoff","doi":"10.1016/j.cels.2024.10.003","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria employ diverse gene regulatory networks to survive stress, but deciphering the underlying logic of these complex networks has proved challenging. Here, we use time-resolved single-cell imaging to explore the functioning of the E. coli regulatory response to oxidative stress. We observe diverse gene expression dynamics within the network. However, by controlling for stress-induced growth-rate changes, we show that these patterns involve just three classes of regulation: downregulated genes, upregulated pulsatile genes, and gradually upregulated genes. The two upregulated classes are distinguished by differences in the binding of the transcription factor, OxyR, and appear to play distinct roles during stress protection. Pulsatile genes activate transiently in a few cells for initial protection of a group of cells, whereas gradually upregulated genes induce evenly, generating a lasting protection involving many cells. Our study shows how bacterial populations use simple regulatory principles to coordinate stress responses in space and time. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1033-1045.e6"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The master regulator OxyR orchestrates bacterial oxidative stress response genes in space and time.\",\"authors\":\"Divya Choudhary, Kevin R Foster, Stephan Uphoff\",\"doi\":\"10.1016/j.cels.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteria employ diverse gene regulatory networks to survive stress, but deciphering the underlying logic of these complex networks has proved challenging. Here, we use time-resolved single-cell imaging to explore the functioning of the E. coli regulatory response to oxidative stress. We observe diverse gene expression dynamics within the network. However, by controlling for stress-induced growth-rate changes, we show that these patterns involve just three classes of regulation: downregulated genes, upregulated pulsatile genes, and gradually upregulated genes. The two upregulated classes are distinguished by differences in the binding of the transcription factor, OxyR, and appear to play distinct roles during stress protection. Pulsatile genes activate transiently in a few cells for initial protection of a group of cells, whereas gradually upregulated genes induce evenly, generating a lasting protection involving many cells. Our study shows how bacterial populations use simple regulatory principles to coordinate stress responses in space and time. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"1033-1045.e6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2024.10.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.10.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细菌利用多种基因调控网络来应对压力,但要破译这些复杂网络的内在逻辑却极具挑战性。在这里,我们利用时间分辨单细胞成像技术来探索大肠杆菌对氧化应激的调控反应。我们观察到网络内多种多样的基因表达动态。然而,通过控制应激诱导的生长速度变化,我们发现这些模式只涉及三类调控:下调基因、上调脉冲基因和逐渐上调基因。这两类上调基因与转录因子 OxyR 的结合方式不同,似乎在应激保护过程中发挥着不同的作用。脉冲基因在少数细胞中瞬时激活,为一组细胞提供初始保护,而逐渐上调的基因则均匀诱导,为许多细胞提供持久保护。我们的研究显示了细菌种群如何利用简单的调控原理在空间和时间上协调应激反应。补充信息中包含了本文透明的同行评审过程记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The master regulator OxyR orchestrates bacterial oxidative stress response genes in space and time.

Bacteria employ diverse gene regulatory networks to survive stress, but deciphering the underlying logic of these complex networks has proved challenging. Here, we use time-resolved single-cell imaging to explore the functioning of the E. coli regulatory response to oxidative stress. We observe diverse gene expression dynamics within the network. However, by controlling for stress-induced growth-rate changes, we show that these patterns involve just three classes of regulation: downregulated genes, upregulated pulsatile genes, and gradually upregulated genes. The two upregulated classes are distinguished by differences in the binding of the transcription factor, OxyR, and appear to play distinct roles during stress protection. Pulsatile genes activate transiently in a few cells for initial protection of a group of cells, whereas gradually upregulated genes induce evenly, generating a lasting protection involving many cells. Our study shows how bacterial populations use simple regulatory principles to coordinate stress responses in space and time. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信