哺乳动物肠道中超级定殖微生物群重塑生态位过程中的时空动态。

Cell systems Pub Date : 2024-11-20 Epub Date: 2024-11-13 DOI:10.1016/j.cels.2024.10.007
Guillaume Urtecho, Thomas Moody, Yiming Huang, Ravi U Sheth, Miles Richardson, Hélène C Descamps, Andrew Kaufman, Opeyemi Lekan, Zetian Zhang, Florencia Velez-Cortes, Yiming Qu, Lucas Cohen, Deirdre Ricaurte, Travis E Gibson, Georg K Gerber, Christoph A Thaiss, Harris H Wang
{"title":"哺乳动物肠道中超级定殖微生物群重塑生态位过程中的时空动态。","authors":"Guillaume Urtecho, Thomas Moody, Yiming Huang, Ravi U Sheth, Miles Richardson, Hélène C Descamps, Andrew Kaufman, Opeyemi Lekan, Zetian Zhang, Florencia Velez-Cortes, Yiming Qu, Lucas Cohen, Deirdre Ricaurte, Travis E Gibson, Georg K Gerber, Christoph A Thaiss, Harris H Wang","doi":"10.1016/j.cels.2024.10.007","DOIUrl":null,"url":null,"abstract":"<p><p>While fecal microbiota transplantation (FMT) has been shown to be effective in reversing gut dysbiosis, we lack an understanding of the fundamental processes underlying microbial engraftment in the mammalian gut. Here, we explored a murine gut colonization model leveraging natural inter-individual variations in gut microbiomes to elucidate the spatiotemporal dynamics of FMT. We identified a natural \"super-donor\" consortium that robustly engrafts into diverse recipients and resists reciprocal colonization. Temporal profiling of the gut microbiome showed an ordered succession of rapid engraftment by early colonizers within 72 h, followed by a slower emergence of late colonizers over 15-30 days. Moreover, engraftment was localized to distinct compartments of the gastrointestinal tract in a species-specific manner. Spatial metagenomic characterization suggested engraftment was mediated by simultaneous transfer of spatially co-localizing species from the super-donor consortia. These results offer a mechanism of super-donor colonization by which nutritional niches are expanded in a spatiotemporally dependent manner. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1002-1017.e4"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal dynamics during niche remodeling by super-colonizing microbiota in the mammalian gut.\",\"authors\":\"Guillaume Urtecho, Thomas Moody, Yiming Huang, Ravi U Sheth, Miles Richardson, Hélène C Descamps, Andrew Kaufman, Opeyemi Lekan, Zetian Zhang, Florencia Velez-Cortes, Yiming Qu, Lucas Cohen, Deirdre Ricaurte, Travis E Gibson, Georg K Gerber, Christoph A Thaiss, Harris H Wang\",\"doi\":\"10.1016/j.cels.2024.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While fecal microbiota transplantation (FMT) has been shown to be effective in reversing gut dysbiosis, we lack an understanding of the fundamental processes underlying microbial engraftment in the mammalian gut. Here, we explored a murine gut colonization model leveraging natural inter-individual variations in gut microbiomes to elucidate the spatiotemporal dynamics of FMT. We identified a natural \\\"super-donor\\\" consortium that robustly engrafts into diverse recipients and resists reciprocal colonization. Temporal profiling of the gut microbiome showed an ordered succession of rapid engraftment by early colonizers within 72 h, followed by a slower emergence of late colonizers over 15-30 days. Moreover, engraftment was localized to distinct compartments of the gastrointestinal tract in a species-specific manner. Spatial metagenomic characterization suggested engraftment was mediated by simultaneous transfer of spatially co-localizing species from the super-donor consortia. These results offer a mechanism of super-donor colonization by which nutritional niches are expanded in a spatiotemporally dependent manner. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"1002-1017.e4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2024.10.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.10.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然粪便微生物群移植(FMT)已被证明能有效逆转肠道菌群失调,但我们对哺乳动物肠道微生物移植的基本过程缺乏了解。在这里,我们利用肠道微生物组的自然个体间差异探索了一种小鼠肠道定植模型,以阐明 FMT 的时空动态。我们发现了一个天然的 "超级供体 "联合体,它能稳健地嫁接到不同的受体中,并抵御相互定植。肠道微生物组的时空剖面图显示,早期定植者在72小时内快速接种,随后在15-30天内缓慢出现晚期定植者。此外,移植物以物种特异性的方式定位于胃肠道的不同区段。空间元基因组特征表明,移植是由超级供体联合体中空间共定位物种的同时转移介导的。这些结果提供了一种超级供体定殖机制,通过这种机制,营养龛位以时空依赖的方式得到扩展。补充信息中包含了本文透明的同行评审过程记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal dynamics during niche remodeling by super-colonizing microbiota in the mammalian gut.

While fecal microbiota transplantation (FMT) has been shown to be effective in reversing gut dysbiosis, we lack an understanding of the fundamental processes underlying microbial engraftment in the mammalian gut. Here, we explored a murine gut colonization model leveraging natural inter-individual variations in gut microbiomes to elucidate the spatiotemporal dynamics of FMT. We identified a natural "super-donor" consortium that robustly engrafts into diverse recipients and resists reciprocal colonization. Temporal profiling of the gut microbiome showed an ordered succession of rapid engraftment by early colonizers within 72 h, followed by a slower emergence of late colonizers over 15-30 days. Moreover, engraftment was localized to distinct compartments of the gastrointestinal tract in a species-specific manner. Spatial metagenomic characterization suggested engraftment was mediated by simultaneous transfer of spatially co-localizing species from the super-donor consortia. These results offer a mechanism of super-donor colonization by which nutritional niches are expanded in a spatiotemporally dependent manner. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信