Julia Maier, Julian D Schwab, Silke D Werle, Ralf Marienfeld, Peter Möller, Nadine T Gaisa, Nensi Ikonomi, Hans A Kestler
{"title":"布尔网络建模及其与实验读数的整合:使用白血病模型的跨学科演示。","authors":"Julia Maier, Julian D Schwab, Silke D Werle, Ralf Marienfeld, Peter Möller, Nadine T Gaisa, Nensi Ikonomi, Hans A Kestler","doi":"10.1007/s00292-024-01395-6","DOIUrl":null,"url":null,"abstract":"<p><p>The limited availability of suitable animal models and cell lines often impedes experimental cancer research. Wet-laboratory experiments are also time-consuming and cost-intensive. In this review, we present an in silico modeling strategy, namely, Boolean network (BN) models, and demonstrate how it could be applied to streamline experimental design and to focus the effort of experimental read-outs. Boolean network models allow for the dynamic analysis of large molecular signaling pathways and their crosstalks. After establishing and validating a specific tumor model, mechanistic insights into the tumor cell behavior can be gained by studying the trajectories of different tumor phenotypes. Also, tumor driver and drug target screenings can be performed. These automatic screenings can help to identify new intervention targets and putative biomarkers for tumor evolution, hence guiding new wet-laboratory experiments. The goal of this round-up is to demonstrate how to establish, validate, and use BN modeling and its crosstalks in classic wet-laboratory research using a chronic lymphocytic leukemia (CLL) BN model.</p>","PeriodicalId":74402,"journal":{"name":"Pathologie (Heidelberg, Germany)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boolean network modeling and its integration with experimental read-outs : An interdisciplinary presentation using a leukemia model.\",\"authors\":\"Julia Maier, Julian D Schwab, Silke D Werle, Ralf Marienfeld, Peter Möller, Nadine T Gaisa, Nensi Ikonomi, Hans A Kestler\",\"doi\":\"10.1007/s00292-024-01395-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The limited availability of suitable animal models and cell lines often impedes experimental cancer research. Wet-laboratory experiments are also time-consuming and cost-intensive. In this review, we present an in silico modeling strategy, namely, Boolean network (BN) models, and demonstrate how it could be applied to streamline experimental design and to focus the effort of experimental read-outs. Boolean network models allow for the dynamic analysis of large molecular signaling pathways and their crosstalks. After establishing and validating a specific tumor model, mechanistic insights into the tumor cell behavior can be gained by studying the trajectories of different tumor phenotypes. Also, tumor driver and drug target screenings can be performed. These automatic screenings can help to identify new intervention targets and putative biomarkers for tumor evolution, hence guiding new wet-laboratory experiments. The goal of this round-up is to demonstrate how to establish, validate, and use BN modeling and its crosstalks in classic wet-laboratory research using a chronic lymphocytic leukemia (CLL) BN model.</p>\",\"PeriodicalId\":74402,\"journal\":{\"name\":\"Pathologie (Heidelberg, Germany)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathologie (Heidelberg, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00292-024-01395-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00292-024-01395-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Boolean network modeling and its integration with experimental read-outs : An interdisciplinary presentation using a leukemia model.
The limited availability of suitable animal models and cell lines often impedes experimental cancer research. Wet-laboratory experiments are also time-consuming and cost-intensive. In this review, we present an in silico modeling strategy, namely, Boolean network (BN) models, and demonstrate how it could be applied to streamline experimental design and to focus the effort of experimental read-outs. Boolean network models allow for the dynamic analysis of large molecular signaling pathways and their crosstalks. After establishing and validating a specific tumor model, mechanistic insights into the tumor cell behavior can be gained by studying the trajectories of different tumor phenotypes. Also, tumor driver and drug target screenings can be performed. These automatic screenings can help to identify new intervention targets and putative biomarkers for tumor evolution, hence guiding new wet-laboratory experiments. The goal of this round-up is to demonstrate how to establish, validate, and use BN modeling and its crosstalks in classic wet-laboratory research using a chronic lymphocytic leukemia (CLL) BN model.