Wensi Jiang , Farzad Seidi , Yuqian Liu , Chengcheng Li , Yang Huang , Huining Xiao
{"title":"通过使用 MXene 和 MXene 基复合材料进行表面纳米工程实现纤维素基功能纺织品。","authors":"Wensi Jiang , Farzad Seidi , Yuqian Liu , Chengcheng Li , Yang Huang , Huining Xiao","doi":"10.1016/j.cis.2024.103332","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of smart textiles with the ability to regulate body temperature, monitor human motion, exhibit antibacterial properties, sound fire alarms, and offer fire resistance has sparked considerable interest in recently. MXene displays remarkable attributes like high metallic conductivity, electromagnetic shielding capability, and photothermal/electrothermal properties. Furthermore, due to the highly polar surface groups, MXene nanosheets show exceptional hydrophilic properties and are able to establish strong connections with the polar surfaces of natural fabrics. This review focuses on the most recent developments in altering the surface of cellulosic textiles with MXene and MXene-based composites. The combination of MXene with other modifier agents, such as phosphorous compounds, graphene, carbon nanotube, conductive polymers, antibacterial macromolecules, superhydrophobic polymers, and metal or metal oxide nanoparticles, imparts diverse functionalities to textiles, such as self-cleaning and fire resistance. Moreover, the synergistic effects between these modifier agents with MXenes can improve MXene-related properties like antibacterial, photothermal, electrothermal, and motion- and fire-sensing characteristics.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"335 ","pages":"Article 103332"},"PeriodicalIF":15.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellulose-based functional textiles through surface nano-engineering with MXene and MXene-based composites\",\"authors\":\"Wensi Jiang , Farzad Seidi , Yuqian Liu , Chengcheng Li , Yang Huang , Huining Xiao\",\"doi\":\"10.1016/j.cis.2024.103332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The emergence of smart textiles with the ability to regulate body temperature, monitor human motion, exhibit antibacterial properties, sound fire alarms, and offer fire resistance has sparked considerable interest in recently. MXene displays remarkable attributes like high metallic conductivity, electromagnetic shielding capability, and photothermal/electrothermal properties. Furthermore, due to the highly polar surface groups, MXene nanosheets show exceptional hydrophilic properties and are able to establish strong connections with the polar surfaces of natural fabrics. This review focuses on the most recent developments in altering the surface of cellulosic textiles with MXene and MXene-based composites. The combination of MXene with other modifier agents, such as phosphorous compounds, graphene, carbon nanotube, conductive polymers, antibacterial macromolecules, superhydrophobic polymers, and metal or metal oxide nanoparticles, imparts diverse functionalities to textiles, such as self-cleaning and fire resistance. Moreover, the synergistic effects between these modifier agents with MXenes can improve MXene-related properties like antibacterial, photothermal, electrothermal, and motion- and fire-sensing characteristics.</div></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"335 \",\"pages\":\"Article 103332\"},\"PeriodicalIF\":15.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868624002550\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624002550","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Cellulose-based functional textiles through surface nano-engineering with MXene and MXene-based composites
The emergence of smart textiles with the ability to regulate body temperature, monitor human motion, exhibit antibacterial properties, sound fire alarms, and offer fire resistance has sparked considerable interest in recently. MXene displays remarkable attributes like high metallic conductivity, electromagnetic shielding capability, and photothermal/electrothermal properties. Furthermore, due to the highly polar surface groups, MXene nanosheets show exceptional hydrophilic properties and are able to establish strong connections with the polar surfaces of natural fabrics. This review focuses on the most recent developments in altering the surface of cellulosic textiles with MXene and MXene-based composites. The combination of MXene with other modifier agents, such as phosphorous compounds, graphene, carbon nanotube, conductive polymers, antibacterial macromolecules, superhydrophobic polymers, and metal or metal oxide nanoparticles, imparts diverse functionalities to textiles, such as self-cleaning and fire resistance. Moreover, the synergistic effects between these modifier agents with MXenes can improve MXene-related properties like antibacterial, photothermal, electrothermal, and motion- and fire-sensing characteristics.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.