挑战传统智慧:重新评估Smpd3在细胞外囊泡生物生成中的作用

Marlies Burgelman, Pieter Dujardin, Anthony Willems, Tino Hochepied, Griet Van Imschoot, Elien Van Wonterghem, Lien Van Hoecke, Charysse Vandendriessche, Roosmarijn E. Vandenbroucke
{"title":"挑战传统智慧:重新评估Smpd3在细胞外囊泡生物生成中的作用","authors":"Marlies Burgelman,&nbsp;Pieter Dujardin,&nbsp;Anthony Willems,&nbsp;Tino Hochepied,&nbsp;Griet Van Imschoot,&nbsp;Elien Van Wonterghem,&nbsp;Lien Van Hoecke,&nbsp;Charysse Vandendriessche,&nbsp;Roosmarijn E. Vandenbroucke","doi":"10.1002/jex2.70015","DOIUrl":null,"url":null,"abstract":"<p>Extracellular vesicles (EVs) are pivotal in intercellular communication, impacting diverse physiological and pathological processes. Current in vitro EV biogenesis studies often utilize pharmacological inhibitors, inducing off-target effects and overlooking cell-specific production nuances. Addressing these limitations, we utilized CRISPR/Cas9 to generate heterozygous full-body and conditional sphingomyelin phosphodiesterase 3 (Smpd3) knockout (KO) transgenic mice. <i>Smpd3</i>, also known as neutral sphingomyelinase 2 (nSMase2), triggers membrane curvature through sphingomyelin hydrolysis to ceramide, thereby influencing exosome release. Intriguingly, <i>Smpd3</i> deficiency demonstrated no impact on EV release both in vitro and in vivo, underscoring its potential cell-type-specific role in EV biogenesis. Notably, bone marrow derived macrophages (BMDMs) did exhibit reduced EV release upon <i>Alix</i> deletion. Our findings open avenues for subsequent inquiries, enriching our knowledge of EV biogenesis and illuminating intercellular communication in health and disease.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"3 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544639/pdf/","citationCount":"0","resultStr":"{\"title\":\"Challenging the conventional wisdom: Re-evaluating Smpd3's role in extracellular vesicle biogenesis\",\"authors\":\"Marlies Burgelman,&nbsp;Pieter Dujardin,&nbsp;Anthony Willems,&nbsp;Tino Hochepied,&nbsp;Griet Van Imschoot,&nbsp;Elien Van Wonterghem,&nbsp;Lien Van Hoecke,&nbsp;Charysse Vandendriessche,&nbsp;Roosmarijn E. Vandenbroucke\",\"doi\":\"10.1002/jex2.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extracellular vesicles (EVs) are pivotal in intercellular communication, impacting diverse physiological and pathological processes. Current in vitro EV biogenesis studies often utilize pharmacological inhibitors, inducing off-target effects and overlooking cell-specific production nuances. Addressing these limitations, we utilized CRISPR/Cas9 to generate heterozygous full-body and conditional sphingomyelin phosphodiesterase 3 (Smpd3) knockout (KO) transgenic mice. <i>Smpd3</i>, also known as neutral sphingomyelinase 2 (nSMase2), triggers membrane curvature through sphingomyelin hydrolysis to ceramide, thereby influencing exosome release. Intriguingly, <i>Smpd3</i> deficiency demonstrated no impact on EV release both in vitro and in vivo, underscoring its potential cell-type-specific role in EV biogenesis. Notably, bone marrow derived macrophages (BMDMs) did exhibit reduced EV release upon <i>Alix</i> deletion. Our findings open avenues for subsequent inquiries, enriching our knowledge of EV biogenesis and illuminating intercellular communication in health and disease.</p>\",\"PeriodicalId\":73747,\"journal\":{\"name\":\"Journal of extracellular biology\",\"volume\":\"3 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544639/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of extracellular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jex2.70015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of extracellular biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jex2.70015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞外囊泡(EVs)在细胞间通信中起着关键作用,影响着各种生理和病理过程。目前的体外EV生物发生研究通常使用药理抑制剂,会产生脱靶效应,忽略细胞特异性生产的细微差别。针对这些局限性,我们利用 CRISPR/Cas9 技术产生了杂合子全身和条件性鞘磷脂磷酸二酯酶 3(Smpd3)基因敲除(KO)转基因小鼠。Smpd3又称中性鞘磷脂酶2(nSMase2),通过将鞘磷脂水解为神经酰胺来触发膜弯曲,从而影响外泌体的释放。耐人寻味的是,Smpd3的缺乏对体外和体内的外泌体释放均无影响,这突显了它在外泌体生物发生中潜在的细胞类型特异性作用。值得注意的是,骨髓衍生巨噬细胞(BMDMs)在缺失 Alix 后确实表现出 EV 释放减少。我们的发现为后续研究开辟了道路,丰富了我们对EV生物发生的认识,并阐明了健康和疾病中的细胞间通讯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Challenging the conventional wisdom: Re-evaluating Smpd3's role in extracellular vesicle biogenesis

Challenging the conventional wisdom: Re-evaluating Smpd3's role in extracellular vesicle biogenesis

Extracellular vesicles (EVs) are pivotal in intercellular communication, impacting diverse physiological and pathological processes. Current in vitro EV biogenesis studies often utilize pharmacological inhibitors, inducing off-target effects and overlooking cell-specific production nuances. Addressing these limitations, we utilized CRISPR/Cas9 to generate heterozygous full-body and conditional sphingomyelin phosphodiesterase 3 (Smpd3) knockout (KO) transgenic mice. Smpd3, also known as neutral sphingomyelinase 2 (nSMase2), triggers membrane curvature through sphingomyelin hydrolysis to ceramide, thereby influencing exosome release. Intriguingly, Smpd3 deficiency demonstrated no impact on EV release both in vitro and in vivo, underscoring its potential cell-type-specific role in EV biogenesis. Notably, bone marrow derived macrophages (BMDMs) did exhibit reduced EV release upon Alix deletion. Our findings open avenues for subsequent inquiries, enriching our knowledge of EV biogenesis and illuminating intercellular communication in health and disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信