{"title":"一氧化氮合酶部分参与了运动训练男性出汗量的增加。","authors":"Yumi Okamoto, Junto Otsuka, Tatsuro Amano","doi":"10.1139/apnm-2024-0285","DOIUrl":null,"url":null,"abstract":"<p><p>The physiological mechanisms involved in augmented cholinergic agonist-induced sweating in exercise-trained individuals remain unclear. This study hypothesizes that nitric oxide synthase (NOS) contributes to augmented pilocarpine-induced sweating in habitually exercise-trained individuals. Endurance-trained and untrained men (n=15 each) iontophoretically received 1% L-NAME, a NOS inhibitor, and saline (control) in the forearm and then administered 0.001% and 1% pilocarpine to evaluate sweat rate. L-NAME administration attenuated pilocarpine-induced sweating by 10% in the exercise-trained (P = 0.004) but not in untrained (P = 0.764) groups independent of pilocarpine concentrations. Results indicate that NOS partially contributes to increased cholinergic sweating in exercise-trained men.</p>","PeriodicalId":93878,"journal":{"name":"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial involvement of nitric oxide synthase in increased pilocarpine-induced sweating in exercise-trained men.\",\"authors\":\"Yumi Okamoto, Junto Otsuka, Tatsuro Amano\",\"doi\":\"10.1139/apnm-2024-0285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The physiological mechanisms involved in augmented cholinergic agonist-induced sweating in exercise-trained individuals remain unclear. This study hypothesizes that nitric oxide synthase (NOS) contributes to augmented pilocarpine-induced sweating in habitually exercise-trained individuals. Endurance-trained and untrained men (n=15 each) iontophoretically received 1% L-NAME, a NOS inhibitor, and saline (control) in the forearm and then administered 0.001% and 1% pilocarpine to evaluate sweat rate. L-NAME administration attenuated pilocarpine-induced sweating by 10% in the exercise-trained (P = 0.004) but not in untrained (P = 0.764) groups independent of pilocarpine concentrations. Results indicate that NOS partially contributes to increased cholinergic sweating in exercise-trained men.</p>\",\"PeriodicalId\":93878,\"journal\":{\"name\":\"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/apnm-2024-0285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/apnm-2024-0285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Partial involvement of nitric oxide synthase in increased pilocarpine-induced sweating in exercise-trained men.
The physiological mechanisms involved in augmented cholinergic agonist-induced sweating in exercise-trained individuals remain unclear. This study hypothesizes that nitric oxide synthase (NOS) contributes to augmented pilocarpine-induced sweating in habitually exercise-trained individuals. Endurance-trained and untrained men (n=15 each) iontophoretically received 1% L-NAME, a NOS inhibitor, and saline (control) in the forearm and then administered 0.001% and 1% pilocarpine to evaluate sweat rate. L-NAME administration attenuated pilocarpine-induced sweating by 10% in the exercise-trained (P = 0.004) but not in untrained (P = 0.764) groups independent of pilocarpine concentrations. Results indicate that NOS partially contributes to increased cholinergic sweating in exercise-trained men.