复杂性数据科学:数字双胞胎的衍生产品。

IF 2.2 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2024-11-12 eCollection Date: 2024-11-01 DOI:10.1093/pnasnexus/pgae456
Frank Emmert-Streib, Hocine Cherifi, Kimmo Kaski, Stuart Kauffman, Olli Yli-Harja
{"title":"复杂性数据科学:数字双胞胎的衍生产品。","authors":"Frank Emmert-Streib, Hocine Cherifi, Kimmo Kaski, Stuart Kauffman, Olli Yli-Harja","doi":"10.1093/pnasnexus/pgae456","DOIUrl":null,"url":null,"abstract":"<p><p>Digital twins offer a new and exciting framework that has recently attracted significant interest in fields such as oncology, immunology, and cardiology. The basic idea of a digital twin is to combine simulation and learning to create a virtual model of a physical object. In this paper, we explore how the concept of digital twins can be generalized into a broader, overarching field. From a theoretical standpoint, this generalization is achieved by recognizing that the duality of a digital twin fundamentally connects complexity science with data science, leading to the emergence of complexity data science as a synthesis of the two. We examine the broader implications of this field, including its historical roots, challenges, and opportunities.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"3 11","pages":"pgae456"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555686/pdf/","citationCount":"0","resultStr":"{\"title\":\"Complexity data science: A spin-off from digital twins.\",\"authors\":\"Frank Emmert-Streib, Hocine Cherifi, Kimmo Kaski, Stuart Kauffman, Olli Yli-Harja\",\"doi\":\"10.1093/pnasnexus/pgae456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Digital twins offer a new and exciting framework that has recently attracted significant interest in fields such as oncology, immunology, and cardiology. The basic idea of a digital twin is to combine simulation and learning to create a virtual model of a physical object. In this paper, we explore how the concept of digital twins can be generalized into a broader, overarching field. From a theoretical standpoint, this generalization is achieved by recognizing that the duality of a digital twin fundamentally connects complexity science with data science, leading to the emergence of complexity data science as a synthesis of the two. We examine the broader implications of this field, including its historical roots, challenges, and opportunities.</p>\",\"PeriodicalId\":74468,\"journal\":{\"name\":\"PNAS nexus\",\"volume\":\"3 11\",\"pages\":\"pgae456\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555686/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgae456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgae456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

数字孪生提供了一个令人兴奋的新框架,最近在肿瘤学、免疫学和心脏病学等领域引起了极大的兴趣。数字孪生的基本思想是将模拟和学习结合起来,创建物理对象的虚拟模型。在本文中,我们将探讨如何将数字孪生的概念推广到更广泛、更全面的领域。从理论的角度来看,这种概括是通过认识到数字孪生的二元性从根本上将复杂性科学与数据科学联系在一起,从而导致复杂性数据科学作为二者的综合体出现。我们研究了这一领域更广泛的影响,包括其历史根源、挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complexity data science: A spin-off from digital twins.

Digital twins offer a new and exciting framework that has recently attracted significant interest in fields such as oncology, immunology, and cardiology. The basic idea of a digital twin is to combine simulation and learning to create a virtual model of a physical object. In this paper, we explore how the concept of digital twins can be generalized into a broader, overarching field. From a theoretical standpoint, this generalization is achieved by recognizing that the duality of a digital twin fundamentally connects complexity science with data science, leading to the emergence of complexity data science as a synthesis of the two. We examine the broader implications of this field, including its historical roots, challenges, and opportunities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信