{"title":"皮质醇通过糖皮质激素受体和 p38 丝裂原活化蛋白激酶途径抑制脂多糖诱导的大黄鱼体外炎症反应。","authors":"Jixiu Wang, Chenqian Wu, Zhiqing Ye, Xiaolong Yin, Weiye Li, Guangbo Zhang, Zhijing Jiang, Xudong Liang, Ying Wei, Lifei Ge, Xiuwen Xu, Tianming Wang, Jingwen Yang","doi":"10.1016/j.cbpb.2024.111046","DOIUrl":null,"url":null,"abstract":"<p><p>Glucocorticoids (GCs) are well-established anti-inflammatory agents, with cortisol, an endogenous GC, exerting pivotal regulatory effects on normal physiological processes. However, the immune regulatory role of cortisol in teleost fish, particularly in inflammation induced by pathogenic infection, remains largely unexplored. Here, we revealed that lipopolysaccharide (LPS) triggers a pro-inflammatory response in the large yellow croaker (Larimichthys crocea), as evidenced by increased expression of key pro-inflammatory cytokines and activation of the mitogen-activated protein kinase (MAPK) signaling pathway. We further explored the immunosuppressive capacity of cortisol in LPS-stimulated large yellow croaker kidney cells (PCK cells) and in vitro tissues of the large yellow croaker. Our findings indicated that cortisol effectively suppresses LPS-induced overexpression of pro-inflammatory cytokines and p38 MAPK pathway activation. Moreover, the immunosuppressive effects of cortisol were reversed by pretreatment with mifepristone, a glucocorticoid receptor (GR) antagonist. Collectively, this study delineated the inhibitory role of cortisol in the LPS-induced inflammatory cascade in large yellow croaker and underscores the significance of GR in mediating this response. These insights advance our comprehension of GCs-mediated immune modulation and provide a theoretical basis for the application of cortisol in disease prevention and the selective breeding of disease-resistant traits in aquaculture.</p>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cortisol suppresses lipopolysaccharide-induced in vitro inflammatory response of large yellow croaker (Larimichthys crocea) via the glucocorticoid receptor and p38 mitogen-activated protein kinase pathways.\",\"authors\":\"Jixiu Wang, Chenqian Wu, Zhiqing Ye, Xiaolong Yin, Weiye Li, Guangbo Zhang, Zhijing Jiang, Xudong Liang, Ying Wei, Lifei Ge, Xiuwen Xu, Tianming Wang, Jingwen Yang\",\"doi\":\"10.1016/j.cbpb.2024.111046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucocorticoids (GCs) are well-established anti-inflammatory agents, with cortisol, an endogenous GC, exerting pivotal regulatory effects on normal physiological processes. However, the immune regulatory role of cortisol in teleost fish, particularly in inflammation induced by pathogenic infection, remains largely unexplored. Here, we revealed that lipopolysaccharide (LPS) triggers a pro-inflammatory response in the large yellow croaker (Larimichthys crocea), as evidenced by increased expression of key pro-inflammatory cytokines and activation of the mitogen-activated protein kinase (MAPK) signaling pathway. We further explored the immunosuppressive capacity of cortisol in LPS-stimulated large yellow croaker kidney cells (PCK cells) and in vitro tissues of the large yellow croaker. Our findings indicated that cortisol effectively suppresses LPS-induced overexpression of pro-inflammatory cytokines and p38 MAPK pathway activation. Moreover, the immunosuppressive effects of cortisol were reversed by pretreatment with mifepristone, a glucocorticoid receptor (GR) antagonist. Collectively, this study delineated the inhibitory role of cortisol in the LPS-induced inflammatory cascade in large yellow croaker and underscores the significance of GR in mediating this response. These insights advance our comprehension of GCs-mediated immune modulation and provide a theoretical basis for the application of cortisol in disease prevention and the selective breeding of disease-resistant traits in aquaculture.</p>\",\"PeriodicalId\":55236,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cbpb.2024.111046\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cbpb.2024.111046","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cortisol suppresses lipopolysaccharide-induced in vitro inflammatory response of large yellow croaker (Larimichthys crocea) via the glucocorticoid receptor and p38 mitogen-activated protein kinase pathways.
Glucocorticoids (GCs) are well-established anti-inflammatory agents, with cortisol, an endogenous GC, exerting pivotal regulatory effects on normal physiological processes. However, the immune regulatory role of cortisol in teleost fish, particularly in inflammation induced by pathogenic infection, remains largely unexplored. Here, we revealed that lipopolysaccharide (LPS) triggers a pro-inflammatory response in the large yellow croaker (Larimichthys crocea), as evidenced by increased expression of key pro-inflammatory cytokines and activation of the mitogen-activated protein kinase (MAPK) signaling pathway. We further explored the immunosuppressive capacity of cortisol in LPS-stimulated large yellow croaker kidney cells (PCK cells) and in vitro tissues of the large yellow croaker. Our findings indicated that cortisol effectively suppresses LPS-induced overexpression of pro-inflammatory cytokines and p38 MAPK pathway activation. Moreover, the immunosuppressive effects of cortisol were reversed by pretreatment with mifepristone, a glucocorticoid receptor (GR) antagonist. Collectively, this study delineated the inhibitory role of cortisol in the LPS-induced inflammatory cascade in large yellow croaker and underscores the significance of GR in mediating this response. These insights advance our comprehension of GCs-mediated immune modulation and provide a theoretical basis for the application of cortisol in disease prevention and the selective breeding of disease-resistant traits in aquaculture.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.