用于局部治疗甲癣的新型抗真菌剂 ME1111 的结构-活性关系研究。

IF 2.1 4区 医学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Naomi Takei-Masuda, Maiko Iida, Makoto Ohyama, Kaori Kaneda, Kenji Ueda, Yuji Tabata
{"title":"用于局部治疗甲癣的新型抗真菌剂 ME1111 的结构-活性关系研究。","authors":"Naomi Takei-Masuda, Maiko Iida, Makoto Ohyama, Kaori Kaneda, Kenji Ueda, Yuji Tabata","doi":"10.1038/s41429-024-00789-1","DOIUrl":null,"url":null,"abstract":"<p><p>Onychomycosis is a prevalent disease in many areas of the world, affecting approximately 5.5% of the global population. Among several subtypes of onychomycosis, distal-lateral-subungual onychomycosis is the most common, and topical onychomycosis agents effective against this pathogenesis require properties such as high nail penetration and low affinity for keratin, the main component of the nail. To develop novel and highly effective antifungal agents with such properties, we first established an efficient ex vivo evaluation method using bovine hoof slices and human nails, and then used this method to screen an in-house compound library. Using this strategy, we identified 1, a structure with a phenyl-pyrazole skeleton. In subsequent analyses, we investigated the structure-activity relationship of 1, permitting the identification of 28 (Development Code ME1111).</p>","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-activity relationship studies of ME1111, a novel antifungal agent for topical treatment of onychomycosis.\",\"authors\":\"Naomi Takei-Masuda, Maiko Iida, Makoto Ohyama, Kaori Kaneda, Kenji Ueda, Yuji Tabata\",\"doi\":\"10.1038/s41429-024-00789-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Onychomycosis is a prevalent disease in many areas of the world, affecting approximately 5.5% of the global population. Among several subtypes of onychomycosis, distal-lateral-subungual onychomycosis is the most common, and topical onychomycosis agents effective against this pathogenesis require properties such as high nail penetration and low affinity for keratin, the main component of the nail. To develop novel and highly effective antifungal agents with such properties, we first established an efficient ex vivo evaluation method using bovine hoof slices and human nails, and then used this method to screen an in-house compound library. Using this strategy, we identified 1, a structure with a phenyl-pyrazole skeleton. In subsequent analyses, we investigated the structure-activity relationship of 1, permitting the identification of 28 (Development Code ME1111).</p>\",\"PeriodicalId\":54884,\"journal\":{\"name\":\"Journal of Antibiotics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antibiotics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41429-024-00789-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41429-024-00789-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

股癣是世界许多地区的一种流行病,约占全球人口的 5.5%。在甲癣的几种亚型中,远端-外侧-甲下型甲癣最为常见,而有效对抗这种发病机制的甲癣外用药需要具有高指甲穿透力和对指甲主要成分角蛋白低亲和力等特性。为了开发具有这些特性的新型高效抗真菌剂,我们首先利用牛蹄片和人类指甲建立了一种高效的体内外评估方法,然后利用这种方法筛选内部化合物库。通过这种策略,我们发现了 1,一种具有苯基吡唑骨架的结构。在随后的分析中,我们研究了 1 的结构-活性关系,从而确定了 28(开发代号 ME1111)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-activity relationship studies of ME1111, a novel antifungal agent for topical treatment of onychomycosis.

Onychomycosis is a prevalent disease in many areas of the world, affecting approximately 5.5% of the global population. Among several subtypes of onychomycosis, distal-lateral-subungual onychomycosis is the most common, and topical onychomycosis agents effective against this pathogenesis require properties such as high nail penetration and low affinity for keratin, the main component of the nail. To develop novel and highly effective antifungal agents with such properties, we first established an efficient ex vivo evaluation method using bovine hoof slices and human nails, and then used this method to screen an in-house compound library. Using this strategy, we identified 1, a structure with a phenyl-pyrazole skeleton. In subsequent analyses, we investigated the structure-activity relationship of 1, permitting the identification of 28 (Development Code ME1111).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Antibiotics
Journal of Antibiotics 医学-免疫学
CiteScore
6.60
自引率
3.00%
发文量
87
审稿时长
1 months
期刊介绍: The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Discovery of new antibiotics and related types of biologically active substances Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信