Lian Yu, Miao-Miao Liu, Mei-Qi Guan, Rui Wang, Xiao-Rong Yang, Xiu-Min Zhang, Jing-Jing Wei, Shu-Fen Wu, Hong Gu, Qiang Fu, Jun-Hong Guo, Yan-Li Li
{"title":"与老年大鼠认知异质性相关的外周 CD4+ T 细胞表型和大脑小胶质细胞活化","authors":"Lian Yu, Miao-Miao Liu, Mei-Qi Guan, Rui Wang, Xiao-Rong Yang, Xiu-Min Zhang, Jing-Jing Wei, Shu-Fen Wu, Hong Gu, Qiang Fu, Jun-Hong Guo, Yan-Li Li","doi":"10.1186/s12979-024-00486-5","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive decline is a critical hallmark of brain aging. Although aging is a natural process, there is significant heterogeneity in cognition levels among individuals; however, the underlying mechanisms remain uncertain. In our study, we classified aged male Sprague‒Dawley rats into aged cognition-unimpaired (AU) group and aged cognition-impaired (AI) group by using an attentional set-shifting task. The transcriptome sequencing results of medial prefrontal cortex (mPFC) demonstrated significant differences in microglial activation and inflammatory response pathways between the two groups. Specifically, compared to AU rats, AI rats exhibited a greater presence of CD86-positive microglia and major histocompatibility complex class II (MHC-II)-positive microglia, along with elevated inflammatory molecules, in mPFC. Conversely, AI rats exhibited a reduction in the percentage of microglia expressing CD200R and the anti-inflammatory molecules Arg-1 and TGF-β. Additionally, peripheral blood analysis of AI rats demonstrated elevated levels of Th17 and Th1 cells, along with proinflammatory molecules; however, decreased levels of Treg cells, along with anti-inflammatory molecules, were observed in AI rats. Our research suggested that peripheral Th17/Treg cells and central microglial activation were associated with cognitive heterogeneity in aged rats. These findings may provide a new target for healthy aging.</p>","PeriodicalId":51289,"journal":{"name":"Immunity & Ageing","volume":"21 1","pages":"81"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562703/pdf/","citationCount":"0","resultStr":"{\"title\":\"Peripheral CD4<sup>+</sup> T cell phenotype and brain microglial activation associated with cognitive heterogeneity in aged rats.\",\"authors\":\"Lian Yu, Miao-Miao Liu, Mei-Qi Guan, Rui Wang, Xiao-Rong Yang, Xiu-Min Zhang, Jing-Jing Wei, Shu-Fen Wu, Hong Gu, Qiang Fu, Jun-Hong Guo, Yan-Li Li\",\"doi\":\"10.1186/s12979-024-00486-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cognitive decline is a critical hallmark of brain aging. Although aging is a natural process, there is significant heterogeneity in cognition levels among individuals; however, the underlying mechanisms remain uncertain. In our study, we classified aged male Sprague‒Dawley rats into aged cognition-unimpaired (AU) group and aged cognition-impaired (AI) group by using an attentional set-shifting task. The transcriptome sequencing results of medial prefrontal cortex (mPFC) demonstrated significant differences in microglial activation and inflammatory response pathways between the two groups. Specifically, compared to AU rats, AI rats exhibited a greater presence of CD86-positive microglia and major histocompatibility complex class II (MHC-II)-positive microglia, along with elevated inflammatory molecules, in mPFC. Conversely, AI rats exhibited a reduction in the percentage of microglia expressing CD200R and the anti-inflammatory molecules Arg-1 and TGF-β. Additionally, peripheral blood analysis of AI rats demonstrated elevated levels of Th17 and Th1 cells, along with proinflammatory molecules; however, decreased levels of Treg cells, along with anti-inflammatory molecules, were observed in AI rats. Our research suggested that peripheral Th17/Treg cells and central microglial activation were associated with cognitive heterogeneity in aged rats. These findings may provide a new target for healthy aging.</p>\",\"PeriodicalId\":51289,\"journal\":{\"name\":\"Immunity & Ageing\",\"volume\":\"21 1\",\"pages\":\"81\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunity & Ageing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12979-024-00486-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity & Ageing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12979-024-00486-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
认知能力下降是大脑衰老的一个重要标志。虽然衰老是一个自然过程,但个体之间的认知水平存在显著差异;然而,其潜在机制仍不确定。在我们的研究中,我们通过注意力集转移任务将雄性斯普拉格-道利(Sprague-Dawley)老年大鼠分为老年认知未受损(AU)组和老年认知受损(AI)组。内侧前额叶皮层(mPFC)的转录组测序结果表明,两组大鼠的小胶质细胞活化和炎症反应途径存在显著差异。具体来说,与 AU 大鼠相比,AI 大鼠的 mPFC 中 CD86 阳性小胶质细胞和主要组织相容性复合体 II 类(MHC-II)阳性小胶质细胞更多,炎症分子也升高。相反,人工智能大鼠则表现出表达 CD200R 和抗炎分子 Arg-1 及 TGF-β 的小胶质细胞比例下降。此外,对 AI 大鼠外周血的分析表明,Th17 和 Th1 细胞以及促炎分子的水平升高;然而,在 AI 大鼠中观察到 Treg 细胞以及抗炎分子的水平降低。我们的研究表明,外周 Th17/Treg 细胞和中枢小胶质细胞活化与老年大鼠的认知异质性有关。这些发现可能为健康老龄化提供了一个新的目标。
Peripheral CD4+ T cell phenotype and brain microglial activation associated with cognitive heterogeneity in aged rats.
Cognitive decline is a critical hallmark of brain aging. Although aging is a natural process, there is significant heterogeneity in cognition levels among individuals; however, the underlying mechanisms remain uncertain. In our study, we classified aged male Sprague‒Dawley rats into aged cognition-unimpaired (AU) group and aged cognition-impaired (AI) group by using an attentional set-shifting task. The transcriptome sequencing results of medial prefrontal cortex (mPFC) demonstrated significant differences in microglial activation and inflammatory response pathways between the two groups. Specifically, compared to AU rats, AI rats exhibited a greater presence of CD86-positive microglia and major histocompatibility complex class II (MHC-II)-positive microglia, along with elevated inflammatory molecules, in mPFC. Conversely, AI rats exhibited a reduction in the percentage of microglia expressing CD200R and the anti-inflammatory molecules Arg-1 and TGF-β. Additionally, peripheral blood analysis of AI rats demonstrated elevated levels of Th17 and Th1 cells, along with proinflammatory molecules; however, decreased levels of Treg cells, along with anti-inflammatory molecules, were observed in AI rats. Our research suggested that peripheral Th17/Treg cells and central microglial activation were associated with cognitive heterogeneity in aged rats. These findings may provide a new target for healthy aging.
期刊介绍:
Immunity & Ageing is a specialist open access journal that was first published in 2004. The journal focuses on the impact of ageing on immune systems, the influence of aged immune systems on organismal well-being and longevity, age-associated diseases with immune etiology, and potential immune interventions to increase health span. All articles published in Immunity & Ageing are indexed in the following databases: Biological Abstracts, BIOSIS, CAS, Citebase, DOAJ, Embase, Google Scholar, Journal Citation Reports/Science Edition, OAIster, PubMed, PubMed Central, Science Citation Index Expanded, SCImago, Scopus, SOCOLAR, and Zetoc.