{"title":"用辐射和纳米粒子治疗胰腺癌细胞的超声刺激微气泡:体外研究","authors":"Masao Nakayama, Ayaha Noda, Hiroaki Akasaka, Takahiro Tominaga, Giulia McCorkell, Moshi Geso, Ryohei Sasaki","doi":"10.4103/jmp.jmp_30_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to investigate the radiation enhancement effects of ultrasound-stimulated microbubbles (USMB) with X-rays and nanoparticles on pancreatic cancer cells <i>in</i> <i>vitro</i>.</p><p><strong>Methods: </strong>Sonazoid™ microbubbles were used for USMB treatment with a commercially available ultrasound unit. The characterization of the microbubbles before and after ultrasound exposure with different mechanical parameters was evaluated microscopically. Two pancreatic cancer cell lines, MIAPaCa-2 and PANC-1, were treated with different concentrations of microbubbles in combination with 150 kVp X-rays and hydrogen peroxide-modified titanium dioxide nanoparticles. Cell viability was evaluated using a water-soluble tetrazolium dye and a colony formation assay. In addition, intracellular reactive oxygen species (ROS) induced by the combined treatment were assessed.</p><p><strong>Results: </strong>The number of burst microbubbles increased with ultrasound's higher mechanical index and the exposure time. A significant radiation enhancement effect with a significant increase in ROS levels was observed in MIAPaCa-2 cells treated with USMB and 6 Gy X-rays, whereas it was not significant in PANC-1 cells treated with the same. When a higher concentration of USMB was applied with X-rays, no radiation enhancement effects were observed in either cell line. Moreover, there was no radiation enhancement effect by USMB between cells treated with and without nanoparticles.</p><p><strong>Conclusions: </strong>The results indicate that USMB treatment can additively enhance the therapeutic efficacy of radiation therapy on pancreatic cancer cells, while the synergistic enhancement effects are likely to be cell type and microbubble concentration dependent. In addition, USMB did not improve the efficacy of nanoparticle-induced radiosensitization in the current setting.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 3","pages":"326-334"},"PeriodicalIF":0.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548062/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ultrasound-stimulated Microbubbles for Treatment of Pancreatic Cancer Cells with Radiation and Nanoparticles: <i>In vitro</i> Study.\",\"authors\":\"Masao Nakayama, Ayaha Noda, Hiroaki Akasaka, Takahiro Tominaga, Giulia McCorkell, Moshi Geso, Ryohei Sasaki\",\"doi\":\"10.4103/jmp.jmp_30_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aims to investigate the radiation enhancement effects of ultrasound-stimulated microbubbles (USMB) with X-rays and nanoparticles on pancreatic cancer cells <i>in</i> <i>vitro</i>.</p><p><strong>Methods: </strong>Sonazoid™ microbubbles were used for USMB treatment with a commercially available ultrasound unit. The characterization of the microbubbles before and after ultrasound exposure with different mechanical parameters was evaluated microscopically. Two pancreatic cancer cell lines, MIAPaCa-2 and PANC-1, were treated with different concentrations of microbubbles in combination with 150 kVp X-rays and hydrogen peroxide-modified titanium dioxide nanoparticles. Cell viability was evaluated using a water-soluble tetrazolium dye and a colony formation assay. In addition, intracellular reactive oxygen species (ROS) induced by the combined treatment were assessed.</p><p><strong>Results: </strong>The number of burst microbubbles increased with ultrasound's higher mechanical index and the exposure time. A significant radiation enhancement effect with a significant increase in ROS levels was observed in MIAPaCa-2 cells treated with USMB and 6 Gy X-rays, whereas it was not significant in PANC-1 cells treated with the same. When a higher concentration of USMB was applied with X-rays, no radiation enhancement effects were observed in either cell line. Moreover, there was no radiation enhancement effect by USMB between cells treated with and without nanoparticles.</p><p><strong>Conclusions: </strong>The results indicate that USMB treatment can additively enhance the therapeutic efficacy of radiation therapy on pancreatic cancer cells, while the synergistic enhancement effects are likely to be cell type and microbubble concentration dependent. In addition, USMB did not improve the efficacy of nanoparticle-induced radiosensitization in the current setting.</p>\",\"PeriodicalId\":51719,\"journal\":{\"name\":\"Journal of Medical Physics\",\"volume\":\"49 3\",\"pages\":\"326-334\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548062/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmp.jmp_30_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_30_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
目的:本研究旨在探讨超声刺激微气泡(USMB)与 X 射线和纳米粒子在体外对胰腺癌细胞的辐射增强效应:方法:使用市售超声设备对 Sonazoid™ 微气泡进行 USMB 处理。用显微镜评估了不同机械参数的超声暴露前后微泡的特性。用不同浓度的微气泡结合 150 kVp X 射线和过氧化氢修饰的二氧化钛纳米粒子处理两种胰腺癌细胞系 MIAPaCa-2 和 PANC-1。使用水溶性四氮唑染料和菌落形成检测法评估细胞活力。此外,还对联合处理诱导的细胞内活性氧(ROS)进行了评估:结果:爆裂微气泡的数量随着超声的机械指数和暴露时间的增加而增加。在接受 USMB 和 6 Gy X 射线处理的 MIAPaCa-2 细胞中观察到了明显的辐射增强效应,ROS 水平显著增加,而在接受同样处理的 PANC-1 细胞中则不明显。当较高浓度的 USMB 与 X 射线一起使用时,在两种细胞系中均未观察到辐射增强效应。此外,用纳米颗粒处理的细胞与未用纳米颗粒处理的细胞之间也没有USMB的辐射增强效应:结论:研究结果表明,USMB 处理可增强放射治疗对胰腺癌细胞的疗效,而协同增强效应可能与细胞类型和微泡浓度有关。此外,在目前的情况下,USMB并不能提高纳米粒子诱导的放射增敏疗效。
Ultrasound-stimulated Microbubbles for Treatment of Pancreatic Cancer Cells with Radiation and Nanoparticles: In vitro Study.
Purpose: This study aims to investigate the radiation enhancement effects of ultrasound-stimulated microbubbles (USMB) with X-rays and nanoparticles on pancreatic cancer cells invitro.
Methods: Sonazoid™ microbubbles were used for USMB treatment with a commercially available ultrasound unit. The characterization of the microbubbles before and after ultrasound exposure with different mechanical parameters was evaluated microscopically. Two pancreatic cancer cell lines, MIAPaCa-2 and PANC-1, were treated with different concentrations of microbubbles in combination with 150 kVp X-rays and hydrogen peroxide-modified titanium dioxide nanoparticles. Cell viability was evaluated using a water-soluble tetrazolium dye and a colony formation assay. In addition, intracellular reactive oxygen species (ROS) induced by the combined treatment were assessed.
Results: The number of burst microbubbles increased with ultrasound's higher mechanical index and the exposure time. A significant radiation enhancement effect with a significant increase in ROS levels was observed in MIAPaCa-2 cells treated with USMB and 6 Gy X-rays, whereas it was not significant in PANC-1 cells treated with the same. When a higher concentration of USMB was applied with X-rays, no radiation enhancement effects were observed in either cell line. Moreover, there was no radiation enhancement effect by USMB between cells treated with and without nanoparticles.
Conclusions: The results indicate that USMB treatment can additively enhance the therapeutic efficacy of radiation therapy on pancreatic cancer cells, while the synergistic enhancement effects are likely to be cell type and microbubble concentration dependent. In addition, USMB did not improve the efficacy of nanoparticle-induced radiosensitization in the current setting.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.