基于超声波传感器的三维水幻影水位测量:原型开发。

IF 0.7 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Physics Pub Date : 2024-07-01 Epub Date: 2024-09-21 DOI:10.4103/jmp.jmp_60_24
Taehyung Kim, Jeongun Kim, Engchan Kim
{"title":"基于超声波传感器的三维水幻影水位测量:原型开发。","authors":"Taehyung Kim, Jeongun Kim, Engchan Kim","doi":"10.4103/jmp.jmp_60_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The purpose of this study was to develop a prototype for controlling the water level of a three-dimensional (3D) water phantom using ultrasound sensors and Arduino technology and evaluate its performance in setting up the 3D water phantom for radiation beam measurements.</p><p><strong>Materials and methods: </strong>A prototype consisted of an Arduino Nano board and two types of ultrasound sensors (US015 and SR04). The accuracy of both sensors was tested at various distances and the performance was evaluated through statistical analysis. The distance measurement test was performed rigorously at intervals of 2 cm from 5 cm to 21 cm, measuring an average error and a maximum deviation for each sensor.</p><p><strong>Results: </strong>Both sensors demonstrated the measurement accuracy within 2 mm. When using the traditional and prototype-based setup methods, the measured photon and electron beam profiles did not show any significant difference. This result suggests the equivalent setup capability when using these two different 3D water phantom setup methods.</p><p><strong>Conclusion: </strong>The ultrasound sensor-based prototype is demonstrated as a more effective device in maintaining the 3D water phantom setup consistently compared to the traditional method, which is prone to human error, and it will aid in facilitating precise phantom setup during the commissioning and routine quality assurance (QA) of linear accelerators in radiotherapy clinics.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 3","pages":"387-393"},"PeriodicalIF":0.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548072/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ultrasonic Sensor-based Water Leveling for Three-dimensional Water Phantom: Prototype Development.\",\"authors\":\"Taehyung Kim, Jeongun Kim, Engchan Kim\",\"doi\":\"10.4103/jmp.jmp_60_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The purpose of this study was to develop a prototype for controlling the water level of a three-dimensional (3D) water phantom using ultrasound sensors and Arduino technology and evaluate its performance in setting up the 3D water phantom for radiation beam measurements.</p><p><strong>Materials and methods: </strong>A prototype consisted of an Arduino Nano board and two types of ultrasound sensors (US015 and SR04). The accuracy of both sensors was tested at various distances and the performance was evaluated through statistical analysis. The distance measurement test was performed rigorously at intervals of 2 cm from 5 cm to 21 cm, measuring an average error and a maximum deviation for each sensor.</p><p><strong>Results: </strong>Both sensors demonstrated the measurement accuracy within 2 mm. When using the traditional and prototype-based setup methods, the measured photon and electron beam profiles did not show any significant difference. This result suggests the equivalent setup capability when using these two different 3D water phantom setup methods.</p><p><strong>Conclusion: </strong>The ultrasound sensor-based prototype is demonstrated as a more effective device in maintaining the 3D water phantom setup consistently compared to the traditional method, which is prone to human error, and it will aid in facilitating precise phantom setup during the commissioning and routine quality assurance (QA) of linear accelerators in radiotherapy clinics.</p>\",\"PeriodicalId\":51719,\"journal\":{\"name\":\"Journal of Medical Physics\",\"volume\":\"49 3\",\"pages\":\"387-393\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548072/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmp.jmp_60_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_60_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

研究目的本研究的目的是利用超声波传感器和 Arduino 技术开发一个控制三维(3D)水模型水位的原型,并评估其在建立三维水模型进行辐射束测量时的性能:原型由 Arduino Nano 板和两种类型的超声波传感器(US015 和 SR04)组成。在不同距离测试了两种传感器的准确性,并通过统计分析评估了其性能。距离测量测试在 5 厘米到 21 厘米之间以 2 厘米的间隔严格进行,测量每个传感器的平均误差和最大偏差:结果:两个传感器的测量精度都在 2 毫米以内。在使用传统方法和基于原型的设置方法时,测得的光子和电子束轮廓没有明显差异。这一结果表明,这两种不同的三维水模型设置方法具有同等的设置能力:结论:与容易出现人为错误的传统方法相比,基于超声传感器的原型在保持三维水模型设置的一致性方面是一种更有效的设备,它将有助于促进放疗诊所直线加速器调试和常规质量保证(QA)过程中的精确模型设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasonic Sensor-based Water Leveling for Three-dimensional Water Phantom: Prototype Development.

Objectives: The purpose of this study was to develop a prototype for controlling the water level of a three-dimensional (3D) water phantom using ultrasound sensors and Arduino technology and evaluate its performance in setting up the 3D water phantom for radiation beam measurements.

Materials and methods: A prototype consisted of an Arduino Nano board and two types of ultrasound sensors (US015 and SR04). The accuracy of both sensors was tested at various distances and the performance was evaluated through statistical analysis. The distance measurement test was performed rigorously at intervals of 2 cm from 5 cm to 21 cm, measuring an average error and a maximum deviation for each sensor.

Results: Both sensors demonstrated the measurement accuracy within 2 mm. When using the traditional and prototype-based setup methods, the measured photon and electron beam profiles did not show any significant difference. This result suggests the equivalent setup capability when using these two different 3D water phantom setup methods.

Conclusion: The ultrasound sensor-based prototype is demonstrated as a more effective device in maintaining the 3D water phantom setup consistently compared to the traditional method, which is prone to human error, and it will aid in facilitating precise phantom setup during the commissioning and routine quality assurance (QA) of linear accelerators in radiotherapy clinics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Physics
Journal of Medical Physics RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.10
自引率
11.10%
发文量
55
审稿时长
30 weeks
期刊介绍: JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信