{"title":"使用具有高空间分辨率和双能量选择功能的碲化镉平板探测器的光子计数 X 射线计算机断层扫描。","authors":"Jiro Sato, Eiichi Sato, Kazuki Ito, Hodaka Moriyama, Osahiko Hagiwara, Toshiyuki Enomoto, Manabu Watanabe, Sohei Yoshida, Kunihiro Yoshioka, Hiroyuki Nitta","doi":"10.4103/jmp.jmp_33_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>To perform energy-dispersive X-ray imaging, we constructed a photon-counting X-ray computed tomography (CT) scanner to perform enhanced K-edge CT.</p><p><strong>Methods: </strong>X-ray photons penetrating through an object were detected using a cadmium telluride flat panel detector (FPD) with pixel dimensions of 100 × 100 mm<sup>2</sup>, and 720 radiograms from the FPD were sent to the personal computer to reconstruct tomograms. Gadolinium (Gd) K-edge energy is 50.2 keV, and Gd-Kedge CT was carried out using photons with an energy range of 50-100 keV.</p><p><strong>Results: </strong>Compared with low-energy CT of 15-50 keV, the gray density of muscle and bone substantially decreased, and the image contrast of Gd media was improved utilizing Gd-K-edge CT.</p><p><strong>Conclusion: </strong>Using the cone beam, the effective pixel dimensions were 80 × 80 μm<sup>2</sup>, and blood vessels were observed at a high contrast using Gd-Kedge CT.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 3","pages":"441-447"},"PeriodicalIF":0.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548080/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photon-counting X-ray Computed Tomography Using a Cadmium Telluride Flat Panel Detector with High Spatial Resolutions and Dual-energy Selection.\",\"authors\":\"Jiro Sato, Eiichi Sato, Kazuki Ito, Hodaka Moriyama, Osahiko Hagiwara, Toshiyuki Enomoto, Manabu Watanabe, Sohei Yoshida, Kunihiro Yoshioka, Hiroyuki Nitta\",\"doi\":\"10.4103/jmp.jmp_33_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>To perform energy-dispersive X-ray imaging, we constructed a photon-counting X-ray computed tomography (CT) scanner to perform enhanced K-edge CT.</p><p><strong>Methods: </strong>X-ray photons penetrating through an object were detected using a cadmium telluride flat panel detector (FPD) with pixel dimensions of 100 × 100 mm<sup>2</sup>, and 720 radiograms from the FPD were sent to the personal computer to reconstruct tomograms. Gadolinium (Gd) K-edge energy is 50.2 keV, and Gd-Kedge CT was carried out using photons with an energy range of 50-100 keV.</p><p><strong>Results: </strong>Compared with low-energy CT of 15-50 keV, the gray density of muscle and bone substantially decreased, and the image contrast of Gd media was improved utilizing Gd-K-edge CT.</p><p><strong>Conclusion: </strong>Using the cone beam, the effective pixel dimensions were 80 × 80 μm<sup>2</sup>, and blood vessels were observed at a high contrast using Gd-Kedge CT.</p>\",\"PeriodicalId\":51719,\"journal\":{\"name\":\"Journal of Medical Physics\",\"volume\":\"49 3\",\"pages\":\"441-447\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548080/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmp.jmp_33_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_33_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
简介:为了进行能量色散 X 射线成像,我们构建了一个光子计数 X 射线计算机断层扫描(CT)扫描仪:为了进行能量色散 X 射线成像,我们建造了一台光子计数 X 射线计算机断层扫描(CT)扫描仪,以进行增强 K 边 CT:方法:使用像素尺寸为 100 × 100 mm2 的碲化镉平板探测器(FPD)检测穿透物体的 X 射线光子,并将 FPD 的 720 幅放射图发送到个人计算机,以重建断层图。钆(Gd)K 边能量为 50.2 keV,使用能量范围为 50-100 keV 的光子进行钆边 CT:结果:与 15-50 keV 的低能量 CT 相比,肌肉和骨骼的灰密度大幅降低,利用 Gd-Kedge CT 提高了钆介质的图像对比度:结论:利用锥形束,有效像素尺寸为 80 × 80 μm2,利用钆边缘 CT 可以观察到高对比度的血管。
Photon-counting X-ray Computed Tomography Using a Cadmium Telluride Flat Panel Detector with High Spatial Resolutions and Dual-energy Selection.
Introduction: To perform energy-dispersive X-ray imaging, we constructed a photon-counting X-ray computed tomography (CT) scanner to perform enhanced K-edge CT.
Methods: X-ray photons penetrating through an object were detected using a cadmium telluride flat panel detector (FPD) with pixel dimensions of 100 × 100 mm2, and 720 radiograms from the FPD were sent to the personal computer to reconstruct tomograms. Gadolinium (Gd) K-edge energy is 50.2 keV, and Gd-Kedge CT was carried out using photons with an energy range of 50-100 keV.
Results: Compared with low-energy CT of 15-50 keV, the gray density of muscle and bone substantially decreased, and the image contrast of Gd media was improved utilizing Gd-K-edge CT.
Conclusion: Using the cone beam, the effective pixel dimensions were 80 × 80 μm2, and blood vessels were observed at a high contrast using Gd-Kedge CT.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.