Hsuan-Yu Wan, Kanokwan Bunsawat, Catherine L Jarrett, Katherine L Shields, Angela V Bisconti, Joshua C Weavil, Markus Amann
{"title":"缺氧和高碳酸血症下运动时的区域脑灌注和交感神经激活:对 \"库欣机制 \"的初步认识。","authors":"Hsuan-Yu Wan, Kanokwan Bunsawat, Catherine L Jarrett, Katherine L Shields, Angela V Bisconti, Joshua C Weavil, Markus Amann","doi":"10.1113/JP287181","DOIUrl":null,"url":null,"abstract":"<p><p>We examined the interactive influence of hypoxia and exercise, and hypercapnia and exercise, on regional cerebral perfusion and sympathetic activation. Twenty healthy young adults (seven women) completed study trials including (1) rest in normoxia ( <math> <semantics><msub><mi>S</mi> <mrow><mi>p</mi> <msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> <annotation>${{S}_{{\\mathrm{p}}{{{\\mathrm{O}}}_{\\mathrm{2}}}}}$</annotation></semantics> </math> : ∼96%, <math> <semantics><msub><mi>P</mi> <mrow><mi>ETC</mi> <msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> <annotation>${{P}_{{\\mathrm{ETC}}{{{\\mathrm{O}}}_{\\mathrm{2}}}}}$</annotation></semantics> </math> : ∼36 mmHg), normocapnic hypoxia ( <math> <semantics><msub><mi>S</mi> <mrow><mi>p</mi> <msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> <annotation>${{S}_{{\\mathrm{p}}{{{\\mathrm{O}}}_{\\mathrm{2}}}}}$</annotation></semantics> </math> : ∼84%, <math> <semantics><msub><mi>P</mi> <mrow><mi>ETC</mi> <msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> <annotation>${{P}_{{\\mathrm{ETC}}{{{\\mathrm{O}}}_{\\mathrm{2}}}}}$</annotation></semantics> </math> : ∼36 mmHg), and normoxic hypercapnia ( <math> <semantics><msub><mi>S</mi> <mrow><mi>p</mi> <msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> <annotation>${{S}_{{\\mathrm{p}}{{{\\mathrm{O}}}_{\\mathrm{2}}}}}$</annotation></semantics> </math> : ∼98%, <math> <semantics><msub><mi>P</mi> <mrow><mi>ETC</mi> <msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> <annotation>${{P}_{{\\mathrm{ETC}}{{{\\mathrm{O}}}_{\\mathrm{2}}}}}$</annotation></semantics> </math> : ∼46 mmHg) and (2) unilateral rhythmic handgrip exercise (45% of maximal voluntary contraction at 1 Hz for 3 min) under the same gas conditions. Based on the exercising arm, blood flow in the contralateral internal carotid (ICA<sub>BF</sub>) and ipsilateral vertebral (VA<sub>BF</sub>) arteries, anterior and posterior cerebral O<sub>2</sub> delivery ( <math> <semantics><mrow><mi>C</mi> <msub><mi>D</mi> <msub><mi>O</mi> <mn>2</mn></msub> </msub> </mrow> <annotation>${\\mathrm{C}}{{{\\mathrm{D}}}_{{{{\\mathrm{O}}}_{\\mathrm{2}}}}}$</annotation></semantics> </math> ), and muscle sympathetic nerve activity (MSNA) were measured in each trial. During exercise in hypoxia, ICA<sub>BF</sub>, VA<sub>BF</sub>, anterior and posterior <math> <semantics><mrow><mi>C</mi> <msub><mi>D</mi> <msub><mi>O</mi> <mn>2</mn></msub> </msub> </mrow> <annotation>${\\mathrm{C}}{{{\\mathrm{D}}}_{{{{\\mathrm{O}}}_{\\mathrm{2}}}}}$</annotation></semantics> </math> were significantly lower, whereas total MSNA was significantly greater, than the sum of the responses evoked by either hypoxia or exercise alone. During exercise in hypercapnia, ICA<sub>BF</sub> and anterior <math> <semantics><mrow><mi>C</mi> <msub><mi>D</mi> <msub><mi>O</mi> <mn>2</mn></msub> </msub> </mrow> <annotation>${\\mathrm{C}}{{{\\mathrm{D}}}_{{{{\\mathrm{O}}}_{\\mathrm{2}}}}}$</annotation></semantics> </math> were significantly greater, whereas MSNA was lower, than the sum of the responses evoked by either hypercapnia or exercise alone. The VA<sub>BF</sub> and posterior <math> <semantics><mrow><mi>C</mi> <msub><mi>D</mi> <msub><mi>O</mi> <mn>2</mn></msub> </msub> </mrow> <annotation>${\\mathrm{C}}{{{\\mathrm{D}}}_{{{{\\mathrm{O}}}_{\\mathrm{2}}}}}$</annotation></semantics> </math> responses to hypercapnic exercise were not different from the summated responses. These findings suggest that the brain is hypoperfused and sympathetic outflow potentiated during hypoxic exercise, and that the brain is hyperperfused and sympathetic discharge constrained during hypercapnic exercise. The contrasting consequences for cerebral perfusion and sympathetic activation indicate a potential involvement of Cushing's mechanism in the autonomic control during exercise in healthy humans. KEY POINTS: Brain O<sub>2</sub>-demand and -supply are mismatched, and muscle sympathetic nerve activity (MSNA) is enhanced in humans exercising at high altitude; the link between the two phenomena remains elusive. We evaluated the isolated and interactive effects of exercise, hypoxia, and hypercapnia on blood flow in the internal carotid (ICA<sub>BF</sub>) and vertebral (VA<sub>BF</sub>) arteries, and MSNA. The interaction of hypoxia and exercise was hypo-additive for ICA<sub>BF</sub> and VA<sub>BF</sub> and anterior and posterior cerebral O<sub>2</sub> delivery ( <math> <semantics><mrow><mi>C</mi> <msub><mi>D</mi> <msub><mi>O</mi> <mn>2</mn></msub> </msub> </mrow> <annotation>${\\mathrm{C}}{{{\\mathrm{D}}}_{{{{\\mathrm{O}}}_{\\mathrm{2}}}}}$</annotation></semantics> </math> ), but hyper-additive for MSNA. The interaction of hypercapnia and exercise was hyper-additive for ICA<sub>BF</sub> and anterior <math> <semantics><mrow><mi>C</mi> <msub><mi>D</mi> <msub><mi>O</mi> <mn>2</mn></msub> </msub> </mrow> <annotation>${\\mathrm{C}}{{{\\mathrm{D}}}_{{{{\\mathrm{O}}}_{\\mathrm{2}}}}}$</annotation></semantics> </math> , additive for VA<sub>BF</sub> and posterior <math> <semantics><mrow><mi>C</mi> <msub><mi>D</mi> <msub><mi>O</mi> <mn>2</mn></msub> </msub> </mrow> <annotation>${\\mathrm{C}}{{{\\mathrm{D}}}_{{{{\\mathrm{O}}}_{\\mathrm{2}}}}}$</annotation></semantics> </math> , and hypo-additive for MSNA. These observations indicate that a suboptimal brain perfusion during hypoxic exercise coincides with a potentiated sympathetic outflow, while a (supra-)optimal brain perfusion during hypercapnic exercise coincides with a suppressed sympathetic outflow. Our findings suggest that Cushing's mechanism may play a role in the autonomic control in exercising humans.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional cerebral perfusion and sympathetic activation during exercise in hypoxia and hypercapnia: preliminary insight into 'Cushing's mechanism'.\",\"authors\":\"Hsuan-Yu Wan, Kanokwan Bunsawat, Catherine L Jarrett, Katherine L Shields, Angela V Bisconti, Joshua C Weavil, Markus Amann\",\"doi\":\"10.1113/JP287181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We examined the interactive influence of hypoxia and exercise, and hypercapnia and exercise, on regional cerebral perfusion and sympathetic activation. Twenty healthy young adults (seven women) completed study trials including (1) rest in normoxia ( <math> <semantics><msub><mi>S</mi> <mrow><mi>p</mi> <msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> <annotation>${{S}_{{\\\\mathrm{p}}{{{\\\\mathrm{O}}}_{\\\\mathrm{2}}}}}$</annotation></semantics> </math> : ∼96%, <math> <semantics><msub><mi>P</mi> <mrow><mi>ETC</mi> <msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> <annotation>${{P}_{{\\\\mathrm{ETC}}{{{\\\\mathrm{O}}}_{\\\\mathrm{2}}}}}$</annotation></semantics> </math> : ∼36 mmHg), normocapnic hypoxia ( <math> <semantics><msub><mi>S</mi> <mrow><mi>p</mi> <msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> <annotation>${{S}_{{\\\\mathrm{p}}{{{\\\\mathrm{O}}}_{\\\\mathrm{2}}}}}$</annotation></semantics> </math> : ∼84%, <math> <semantics><msub><mi>P</mi> <mrow><mi>ETC</mi> <msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> <annotation>${{P}_{{\\\\mathrm{ETC}}{{{\\\\mathrm{O}}}_{\\\\mathrm{2}}}}}$</annotation></semantics> </math> : ∼36 mmHg), and normoxic hypercapnia ( <math> <semantics><msub><mi>S</mi> <mrow><mi>p</mi> <msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> <annotation>${{S}_{{\\\\mathrm{p}}{{{\\\\mathrm{O}}}_{\\\\mathrm{2}}}}}$</annotation></semantics> </math> : ∼98%, <math> <semantics><msub><mi>P</mi> <mrow><mi>ETC</mi> <msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> <annotation>${{P}_{{\\\\mathrm{ETC}}{{{\\\\mathrm{O}}}_{\\\\mathrm{2}}}}}$</annotation></semantics> </math> : ∼46 mmHg) and (2) unilateral rhythmic handgrip exercise (45% of maximal voluntary contraction at 1 Hz for 3 min) under the same gas conditions. Based on the exercising arm, blood flow in the contralateral internal carotid (ICA<sub>BF</sub>) and ipsilateral vertebral (VA<sub>BF</sub>) arteries, anterior and posterior cerebral O<sub>2</sub> delivery ( <math> <semantics><mrow><mi>C</mi> <msub><mi>D</mi> <msub><mi>O</mi> <mn>2</mn></msub> </msub> </mrow> <annotation>${\\\\mathrm{C}}{{{\\\\mathrm{D}}}_{{{{\\\\mathrm{O}}}_{\\\\mathrm{2}}}}}$</annotation></semantics> </math> ), and muscle sympathetic nerve activity (MSNA) were measured in each trial. During exercise in hypoxia, ICA<sub>BF</sub>, VA<sub>BF</sub>, anterior and posterior <math> <semantics><mrow><mi>C</mi> <msub><mi>D</mi> <msub><mi>O</mi> <mn>2</mn></msub> </msub> </mrow> <annotation>${\\\\mathrm{C}}{{{\\\\mathrm{D}}}_{{{{\\\\mathrm{O}}}_{\\\\mathrm{2}}}}}$</annotation></semantics> </math> were significantly lower, whereas total MSNA was significantly greater, than the sum of the responses evoked by either hypoxia or exercise alone. During exercise in hypercapnia, ICA<sub>BF</sub> and anterior <math> <semantics><mrow><mi>C</mi> <msub><mi>D</mi> <msub><mi>O</mi> <mn>2</mn></msub> </msub> </mrow> <annotation>${\\\\mathrm{C}}{{{\\\\mathrm{D}}}_{{{{\\\\mathrm{O}}}_{\\\\mathrm{2}}}}}$</annotation></semantics> </math> were significantly greater, whereas MSNA was lower, than the sum of the responses evoked by either hypercapnia or exercise alone. The VA<sub>BF</sub> and posterior <math> <semantics><mrow><mi>C</mi> <msub><mi>D</mi> <msub><mi>O</mi> <mn>2</mn></msub> </msub> </mrow> <annotation>${\\\\mathrm{C}}{{{\\\\mathrm{D}}}_{{{{\\\\mathrm{O}}}_{\\\\mathrm{2}}}}}$</annotation></semantics> </math> responses to hypercapnic exercise were not different from the summated responses. These findings suggest that the brain is hypoperfused and sympathetic outflow potentiated during hypoxic exercise, and that the brain is hyperperfused and sympathetic discharge constrained during hypercapnic exercise. The contrasting consequences for cerebral perfusion and sympathetic activation indicate a potential involvement of Cushing's mechanism in the autonomic control during exercise in healthy humans. KEY POINTS: Brain O<sub>2</sub>-demand and -supply are mismatched, and muscle sympathetic nerve activity (MSNA) is enhanced in humans exercising at high altitude; the link between the two phenomena remains elusive. We evaluated the isolated and interactive effects of exercise, hypoxia, and hypercapnia on blood flow in the internal carotid (ICA<sub>BF</sub>) and vertebral (VA<sub>BF</sub>) arteries, and MSNA. The interaction of hypoxia and exercise was hypo-additive for ICA<sub>BF</sub> and VA<sub>BF</sub> and anterior and posterior cerebral O<sub>2</sub> delivery ( <math> <semantics><mrow><mi>C</mi> <msub><mi>D</mi> <msub><mi>O</mi> <mn>2</mn></msub> </msub> </mrow> <annotation>${\\\\mathrm{C}}{{{\\\\mathrm{D}}}_{{{{\\\\mathrm{O}}}_{\\\\mathrm{2}}}}}$</annotation></semantics> </math> ), but hyper-additive for MSNA. The interaction of hypercapnia and exercise was hyper-additive for ICA<sub>BF</sub> and anterior <math> <semantics><mrow><mi>C</mi> <msub><mi>D</mi> <msub><mi>O</mi> <mn>2</mn></msub> </msub> </mrow> <annotation>${\\\\mathrm{C}}{{{\\\\mathrm{D}}}_{{{{\\\\mathrm{O}}}_{\\\\mathrm{2}}}}}$</annotation></semantics> </math> , additive for VA<sub>BF</sub> and posterior <math> <semantics><mrow><mi>C</mi> <msub><mi>D</mi> <msub><mi>O</mi> <mn>2</mn></msub> </msub> </mrow> <annotation>${\\\\mathrm{C}}{{{\\\\mathrm{D}}}_{{{{\\\\mathrm{O}}}_{\\\\mathrm{2}}}}}$</annotation></semantics> </math> , and hypo-additive for MSNA. These observations indicate that a suboptimal brain perfusion during hypoxic exercise coincides with a potentiated sympathetic outflow, while a (supra-)optimal brain perfusion during hypercapnic exercise coincides with a suppressed sympathetic outflow. Our findings suggest that Cushing's mechanism may play a role in the autonomic control in exercising humans.</p>\",\"PeriodicalId\":50088,\"journal\":{\"name\":\"Journal of Physiology-London\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-London\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/JP287181\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP287181","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了低氧和运动以及高碳酸血症和运动对区域脑灌注和交感神经激活的交互影响。20 名健康的年轻人(7 名女性)完成了研究试验,包括(1)在常氧状态下休息(S p O 2 ${{S}_{\mathrm{p}}{{\mathrm{O}}}_{\mathrm{2}}}}}$ :∼96%, P ETC O 2 ${{P}_{{m\mathrm{ETC}}{{{m\mathrm{O}}}_{\mathrm{2}}}}}$ : ∼36 mmHg), normocapnic hypoxia ( S p O 2 ${{S}_{{m\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ :∼84%, P ETC O 2 ${{P}_{{mathrm{ETC}}{{{mathrm{O}}}_{\mathrm{2}}}}}$ : ∼36 mmHg),以及常氧高碳酸血症(S p O 2 ${{S}_{{mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ :∼98%,P ETC O 2 ${{P}_{{m\mathrm{ETC}}{{{m\mathrm{O}}}_{{\mathrm{2}}}}}$ : ∼46 mmHg);(2)在相同气体条件下进行单侧节律性手握运动(以 1 Hz 的频率进行最大自主收缩的 45%,持续 3 分钟)。根据运动臂的情况,每次试验都测量了对侧颈内动脉(ICABF)和同侧椎动脉(VABF)的血流量、前后大脑氧气输送量(C D O 2 ${\mathrm{C}}{{\mathrm{D}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ )和肌肉交感神经活动(MSNA)。在缺氧状态下运动时,ICABF、VABF、前后C D O 2 ${\mathrm{C}}{{\mathrm{D}}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ 显著低于缺氧或单独运动所引起的反应总和,而总 MSNA 则显著高于缺氧或单独运动所引起的反应总和。在高碳酸血症状态下运动时,ICABF 和前 C D O 2 ${\mathrm{C}}{{{m\mathrm{D}}}_{{{{\mathrm{O}}_{{m\mathrm{2}}}}}$ 明显大于高碳酸血症或单独运动所诱发的反应总和,而 MSNA 则低于此值。VABF 和后部 C D O 2 ${\mathrm{C}}{{\mathrm{D}}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ 对高碳酸血症运动的反应与总反应没有差异。这些发现表明,低氧运动时大脑灌注不足,交感神经外流增强,而高碳酸运动时大脑灌注过多,交感神经放电受限。脑灌注和交感神经激活的对比结果表明,库欣机制可能参与了健康人运动时的自律神经控制。要点人类在高海拔地区运动时,大脑的氧气需求和氧气供应不匹配,肌肉交感神经活动(MSNA)增强;这两种现象之间的联系仍然难以捉摸。我们评估了运动、缺氧和高碳酸血症对颈内动脉(ICABF)和椎动脉(VABF)血流量以及 MSNA 的单独和交互影响。缺氧和运动的相互作用对颈内动脉(ICABF)和椎动脉(VABF)以及大脑前后氧气输送(C D O 2 ${\mathrm{C}}{{\mathrm{D}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ )是低加成的,但对 MSNA 是高加成的。高碳酸血症与运动的交互作用对 ICABF 和前 C D O 2 ${\mathrm{C}}{{\mathrm{D}}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ 是超加性的、对于 VABF 和后验 C D O 2 ${{mathrm{C}}{{{mathrm{D}}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ 是加性的,而对于 MSNA 是低加性的。这些观察结果表明,低氧运动时的次优脑灌注与交感神经外流的增强相吻合,而高碳酸运动时的(超)优脑灌注与交感神经外流的抑制相吻合。我们的研究结果表明,库欣机制可能在运动人体的自律神经控制中发挥作用。
Regional cerebral perfusion and sympathetic activation during exercise in hypoxia and hypercapnia: preliminary insight into 'Cushing's mechanism'.
We examined the interactive influence of hypoxia and exercise, and hypercapnia and exercise, on regional cerebral perfusion and sympathetic activation. Twenty healthy young adults (seven women) completed study trials including (1) rest in normoxia ( : ∼96%, : ∼36 mmHg), normocapnic hypoxia ( : ∼84%, : ∼36 mmHg), and normoxic hypercapnia ( : ∼98%, : ∼46 mmHg) and (2) unilateral rhythmic handgrip exercise (45% of maximal voluntary contraction at 1 Hz for 3 min) under the same gas conditions. Based on the exercising arm, blood flow in the contralateral internal carotid (ICABF) and ipsilateral vertebral (VABF) arteries, anterior and posterior cerebral O2 delivery ( ), and muscle sympathetic nerve activity (MSNA) were measured in each trial. During exercise in hypoxia, ICABF, VABF, anterior and posterior were significantly lower, whereas total MSNA was significantly greater, than the sum of the responses evoked by either hypoxia or exercise alone. During exercise in hypercapnia, ICABF and anterior were significantly greater, whereas MSNA was lower, than the sum of the responses evoked by either hypercapnia or exercise alone. The VABF and posterior responses to hypercapnic exercise were not different from the summated responses. These findings suggest that the brain is hypoperfused and sympathetic outflow potentiated during hypoxic exercise, and that the brain is hyperperfused and sympathetic discharge constrained during hypercapnic exercise. The contrasting consequences for cerebral perfusion and sympathetic activation indicate a potential involvement of Cushing's mechanism in the autonomic control during exercise in healthy humans. KEY POINTS: Brain O2-demand and -supply are mismatched, and muscle sympathetic nerve activity (MSNA) is enhanced in humans exercising at high altitude; the link between the two phenomena remains elusive. We evaluated the isolated and interactive effects of exercise, hypoxia, and hypercapnia on blood flow in the internal carotid (ICABF) and vertebral (VABF) arteries, and MSNA. The interaction of hypoxia and exercise was hypo-additive for ICABF and VABF and anterior and posterior cerebral O2 delivery ( ), but hyper-additive for MSNA. The interaction of hypercapnia and exercise was hyper-additive for ICABF and anterior , additive for VABF and posterior , and hypo-additive for MSNA. These observations indicate that a suboptimal brain perfusion during hypoxic exercise coincides with a potentiated sympathetic outflow, while a (supra-)optimal brain perfusion during hypercapnic exercise coincides with a suppressed sympathetic outflow. Our findings suggest that Cushing's mechanism may play a role in the autonomic control in exercising humans.
期刊介绍:
The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew.
The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.