Cristina Román-Vendrell, Jaqulin N Wallace, Aurelia Hays Watson, Meral Celikag, Tim Bartels, Jennifer R Morgan
{"title":"急性引入单体或多聚α-突触核蛋白会对鳗鱼巨型突触的突触小泡贩运产生不同的影响。","authors":"Cristina Román-Vendrell, Jaqulin N Wallace, Aurelia Hays Watson, Meral Celikag, Tim Bartels, Jennifer R Morgan","doi":"10.1113/JP286281","DOIUrl":null,"url":null,"abstract":"<p><p>Synaptic aggregation of α-synuclein often occurs in Parkinson's disease (PD), dementia with Lewy bodies (DLB) and other synucleinopathies and is associated with cognitive deficits and dementia. Thus, it is important to understand how accumulation of α-synuclein affects synapse structure and function. Native, physiological α-synuclein comprises a mixture of tetramers and related physiological oligomers (60-100 kDa) in equilibrium with monomeric α-synuclein. We previously demonstrated that acutely increasing the levels of physiological α-synuclein impaired intracellular synaptic vesicle trafficking and produced a pleiotropic phenotype, raising questions about which aspects of the synaptic phenotype were due to multimeric versus monomeric α-synuclein. Here, we address this by taking advantage of the unique features of the lamprey giant reticulospinal (RS) synapse, a vertebrate synapse that is amenable to acute perturbations of presynaptic processes via microinjection of purified proteins. α-Synuclein monomers and multimers were purified from HEK cells and separately introduced to lamprey synapses. Ultrastructural analysis revealed that both multimeric and monomeric α-synuclein impaired intracellular vesicle trafficking, leading to a loss of synaptic vesicles and buildup of endosomes. However, while monomeric α-synuclein additionally induced atypical fusion/fission at the active zone and impaired clathrin-mediated endocytosis, multimeric α-synuclein did not. Conversely, multimeric α-synuclein led to a decrease in synaptic vesicle docking, which was not observed with monomeric α-synuclein. These data provide further evidence that different molecular species of α-synuclein produce distinct and complex impacts on synaptic vesicle trafficking and reveal important insights into the cell biological processes that are affected in PD and DLB. KEY POINTS: α-Synuclein accumulation at synapses is associated with cognitive decline and dementia in Parkinson's disease and other synucleinopathies. We previously showed that acute introduction of excess human brain-derived α-synuclein to lamprey giant synapses caused pleiotropic phenotypes on synaptic vesicle trafficking, probably due to the mixture of molecular species of α-synuclein. Here, we dissected which aspects of the synaptic phenotypes were caused by monomeric (14 kDa) or multimeric (60-100 kDa) α-synuclein by purifying each molecular species and introducing each one separately to synapses via axonal microinjection. While monomeric α-synuclein inhibited clathrin-mediated synaptic vesicle endocytosis, multimeric α-synuclein primarily impaired endosomal trafficking. These findings reveal that different molecular species of α-synuclein have distinct impacts on synapses, suggesting different cellular and molecular targets.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute introduction of monomeric or multimeric α-synuclein induces distinct impacts on synaptic vesicle trafficking at lamprey giant synapses.\",\"authors\":\"Cristina Román-Vendrell, Jaqulin N Wallace, Aurelia Hays Watson, Meral Celikag, Tim Bartels, Jennifer R Morgan\",\"doi\":\"10.1113/JP286281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synaptic aggregation of α-synuclein often occurs in Parkinson's disease (PD), dementia with Lewy bodies (DLB) and other synucleinopathies and is associated with cognitive deficits and dementia. Thus, it is important to understand how accumulation of α-synuclein affects synapse structure and function. Native, physiological α-synuclein comprises a mixture of tetramers and related physiological oligomers (60-100 kDa) in equilibrium with monomeric α-synuclein. We previously demonstrated that acutely increasing the levels of physiological α-synuclein impaired intracellular synaptic vesicle trafficking and produced a pleiotropic phenotype, raising questions about which aspects of the synaptic phenotype were due to multimeric versus monomeric α-synuclein. Here, we address this by taking advantage of the unique features of the lamprey giant reticulospinal (RS) synapse, a vertebrate synapse that is amenable to acute perturbations of presynaptic processes via microinjection of purified proteins. α-Synuclein monomers and multimers were purified from HEK cells and separately introduced to lamprey synapses. Ultrastructural analysis revealed that both multimeric and monomeric α-synuclein impaired intracellular vesicle trafficking, leading to a loss of synaptic vesicles and buildup of endosomes. However, while monomeric α-synuclein additionally induced atypical fusion/fission at the active zone and impaired clathrin-mediated endocytosis, multimeric α-synuclein did not. Conversely, multimeric α-synuclein led to a decrease in synaptic vesicle docking, which was not observed with monomeric α-synuclein. These data provide further evidence that different molecular species of α-synuclein produce distinct and complex impacts on synaptic vesicle trafficking and reveal important insights into the cell biological processes that are affected in PD and DLB. KEY POINTS: α-Synuclein accumulation at synapses is associated with cognitive decline and dementia in Parkinson's disease and other synucleinopathies. We previously showed that acute introduction of excess human brain-derived α-synuclein to lamprey giant synapses caused pleiotropic phenotypes on synaptic vesicle trafficking, probably due to the mixture of molecular species of α-synuclein. Here, we dissected which aspects of the synaptic phenotypes were caused by monomeric (14 kDa) or multimeric (60-100 kDa) α-synuclein by purifying each molecular species and introducing each one separately to synapses via axonal microinjection. While monomeric α-synuclein inhibited clathrin-mediated synaptic vesicle endocytosis, multimeric α-synuclein primarily impaired endosomal trafficking. These findings reveal that different molecular species of α-synuclein have distinct impacts on synapses, suggesting different cellular and molecular targets.</p>\",\"PeriodicalId\":50088,\"journal\":{\"name\":\"Journal of Physiology-London\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-London\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/JP286281\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP286281","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Acute introduction of monomeric or multimeric α-synuclein induces distinct impacts on synaptic vesicle trafficking at lamprey giant synapses.
Synaptic aggregation of α-synuclein often occurs in Parkinson's disease (PD), dementia with Lewy bodies (DLB) and other synucleinopathies and is associated with cognitive deficits and dementia. Thus, it is important to understand how accumulation of α-synuclein affects synapse structure and function. Native, physiological α-synuclein comprises a mixture of tetramers and related physiological oligomers (60-100 kDa) in equilibrium with monomeric α-synuclein. We previously demonstrated that acutely increasing the levels of physiological α-synuclein impaired intracellular synaptic vesicle trafficking and produced a pleiotropic phenotype, raising questions about which aspects of the synaptic phenotype were due to multimeric versus monomeric α-synuclein. Here, we address this by taking advantage of the unique features of the lamprey giant reticulospinal (RS) synapse, a vertebrate synapse that is amenable to acute perturbations of presynaptic processes via microinjection of purified proteins. α-Synuclein monomers and multimers were purified from HEK cells and separately introduced to lamprey synapses. Ultrastructural analysis revealed that both multimeric and monomeric α-synuclein impaired intracellular vesicle trafficking, leading to a loss of synaptic vesicles and buildup of endosomes. However, while monomeric α-synuclein additionally induced atypical fusion/fission at the active zone and impaired clathrin-mediated endocytosis, multimeric α-synuclein did not. Conversely, multimeric α-synuclein led to a decrease in synaptic vesicle docking, which was not observed with monomeric α-synuclein. These data provide further evidence that different molecular species of α-synuclein produce distinct and complex impacts on synaptic vesicle trafficking and reveal important insights into the cell biological processes that are affected in PD and DLB. KEY POINTS: α-Synuclein accumulation at synapses is associated with cognitive decline and dementia in Parkinson's disease and other synucleinopathies. We previously showed that acute introduction of excess human brain-derived α-synuclein to lamprey giant synapses caused pleiotropic phenotypes on synaptic vesicle trafficking, probably due to the mixture of molecular species of α-synuclein. Here, we dissected which aspects of the synaptic phenotypes were caused by monomeric (14 kDa) or multimeric (60-100 kDa) α-synuclein by purifying each molecular species and introducing each one separately to synapses via axonal microinjection. While monomeric α-synuclein inhibited clathrin-mediated synaptic vesicle endocytosis, multimeric α-synuclein primarily impaired endosomal trafficking. These findings reveal that different molecular species of α-synuclein have distinct impacts on synapses, suggesting different cellular and molecular targets.
期刊介绍:
The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew.
The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.