Troy Wesson, Satyajit Ambike, Radha Patel, Charles Yates, Rick Nelson, Alexander Francis, Sarah Burgin
{"title":"使用惯性测量单元 (IMU) 增强尸体时空训练的可行性。","authors":"Troy Wesson, Satyajit Ambike, Radha Patel, Charles Yates, Rick Nelson, Alexander Francis, Sarah Burgin","doi":"10.1002/lary.31878","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Insertional speed of cochlear implant electrode arrays (EA) during surgery is correlated with force. Low insertional speed, and therefore force, may allow for preservation of intracochlear structures leading to improved outcomes. Given the importance of low insertional speeds, we investigate the feasibility of using inertial sensors for kinematic analysis during EA insertion to augment otolaryngology-head and neck surgery training.</p><p><strong>Methods: </strong>Practicing otolaryngology surgeons were recruited and inertial measurement units (IMU; Metamotions+, MBIENTLAB Inc, San Jose, CA) consisting of accelerometers were used to measure hand speed during EA (Cochlear™Nucleus®CI522 cochlear implant with Slim Straight electrode, Cochlear Limited, Sydney, Australia) insertion into a cadaveric cochlea. A mixed regression model was utilized to determine differences in speed across trials within a surgeon.</p><p><strong>Results: </strong>A total of nine trials were performed by three surgeons. The highest mean ± SD speed obtained was 8.4 ± 1.7 mm/s, and the highest speed was 22.5 mm/s. Mean speed was not significantly different across trials within surgeons (p > 0.05).</p><p><strong>Discussion: </strong>IMUs are relatively inexpensive and relatively easy to use sensors that provide information on variables that may be of interest for otolaryngology resident training. The use of IMUs as part of advanced temporal training for cochlear electrode insertion can provide insight into hand speed, thereby allowing residents to train with specific regard to this variable. Future randomized-controlled trials can be carried out to determine whether IMUs are conducive to lower insertional speeds.</p><p><strong>Level of evidence: </strong>NA Laryngoscope, 2024.</p>","PeriodicalId":49921,"journal":{"name":"Laryngoscope","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Using Inertial Measurement Units (IMUs) to Augment Cadaveric Temporal Training.\",\"authors\":\"Troy Wesson, Satyajit Ambike, Radha Patel, Charles Yates, Rick Nelson, Alexander Francis, Sarah Burgin\",\"doi\":\"10.1002/lary.31878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Insertional speed of cochlear implant electrode arrays (EA) during surgery is correlated with force. Low insertional speed, and therefore force, may allow for preservation of intracochlear structures leading to improved outcomes. Given the importance of low insertional speeds, we investigate the feasibility of using inertial sensors for kinematic analysis during EA insertion to augment otolaryngology-head and neck surgery training.</p><p><strong>Methods: </strong>Practicing otolaryngology surgeons were recruited and inertial measurement units (IMU; Metamotions+, MBIENTLAB Inc, San Jose, CA) consisting of accelerometers were used to measure hand speed during EA (Cochlear™Nucleus®CI522 cochlear implant with Slim Straight electrode, Cochlear Limited, Sydney, Australia) insertion into a cadaveric cochlea. A mixed regression model was utilized to determine differences in speed across trials within a surgeon.</p><p><strong>Results: </strong>A total of nine trials were performed by three surgeons. The highest mean ± SD speed obtained was 8.4 ± 1.7 mm/s, and the highest speed was 22.5 mm/s. Mean speed was not significantly different across trials within surgeons (p > 0.05).</p><p><strong>Discussion: </strong>IMUs are relatively inexpensive and relatively easy to use sensors that provide information on variables that may be of interest for otolaryngology resident training. The use of IMUs as part of advanced temporal training for cochlear electrode insertion can provide insight into hand speed, thereby allowing residents to train with specific regard to this variable. Future randomized-controlled trials can be carried out to determine whether IMUs are conducive to lower insertional speeds.</p><p><strong>Level of evidence: </strong>NA Laryngoscope, 2024.</p>\",\"PeriodicalId\":49921,\"journal\":{\"name\":\"Laryngoscope\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laryngoscope\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/lary.31878\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laryngoscope","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/lary.31878","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Feasibility of Using Inertial Measurement Units (IMUs) to Augment Cadaveric Temporal Training.
Objective: Insertional speed of cochlear implant electrode arrays (EA) during surgery is correlated with force. Low insertional speed, and therefore force, may allow for preservation of intracochlear structures leading to improved outcomes. Given the importance of low insertional speeds, we investigate the feasibility of using inertial sensors for kinematic analysis during EA insertion to augment otolaryngology-head and neck surgery training.
Methods: Practicing otolaryngology surgeons were recruited and inertial measurement units (IMU; Metamotions+, MBIENTLAB Inc, San Jose, CA) consisting of accelerometers were used to measure hand speed during EA (Cochlear™Nucleus®CI522 cochlear implant with Slim Straight electrode, Cochlear Limited, Sydney, Australia) insertion into a cadaveric cochlea. A mixed regression model was utilized to determine differences in speed across trials within a surgeon.
Results: A total of nine trials were performed by three surgeons. The highest mean ± SD speed obtained was 8.4 ± 1.7 mm/s, and the highest speed was 22.5 mm/s. Mean speed was not significantly different across trials within surgeons (p > 0.05).
Discussion: IMUs are relatively inexpensive and relatively easy to use sensors that provide information on variables that may be of interest for otolaryngology resident training. The use of IMUs as part of advanced temporal training for cochlear electrode insertion can provide insight into hand speed, thereby allowing residents to train with specific regard to this variable. Future randomized-controlled trials can be carried out to determine whether IMUs are conducive to lower insertional speeds.
期刊介绍:
The Laryngoscope has been the leading source of information on advances in the diagnosis and treatment of head and neck disorders since 1890. The Laryngoscope is the first choice among otolaryngologists for publication of their important findings and techniques. Each monthly issue of The Laryngoscope features peer-reviewed medical, clinical, and research contributions in general otolaryngology, allergy/rhinology, otology/neurotology, laryngology/bronchoesophagology, head and neck surgery, sleep medicine, pediatric otolaryngology, facial plastics and reconstructive surgery, oncology, and communicative disorders. Contributions include papers and posters presented at the Annual and Section Meetings of the Triological Society, as well as independent papers, "How I Do It", "Triological Best Practice" articles, and contemporary reviews. Theses authored by the Triological Society’s new Fellows as well as papers presented at meetings of the American Laryngological Association are published in The Laryngoscope.
• Broncho-esophagology
• Communicative disorders
• Head and neck surgery
• Plastic and reconstructive facial surgery
• Oncology
• Speech and hearing defects