哥斯达黎加岩溶洞穴微生物群落的多样性模式和抗生素活性。

IF 2.6 4区 生物学 Q3 MICROBIOLOGY
Felipe Vásquez-Castro, Daniela Wicki-Emmenegger, Paola Fuentes-Schweizer, Layla Nassar-Míguez, Diego Rojas-Gätjens, Keilor Rojas-Jimenez, Max Chavarría
{"title":"哥斯达黎加岩溶洞穴微生物群落的多样性模式和抗生素活性。","authors":"Felipe Vásquez-Castro, Daniela Wicki-Emmenegger, Paola Fuentes-Schweizer, Layla Nassar-Míguez, Diego Rojas-Gätjens, Keilor Rojas-Jimenez, Max Chavarría","doi":"10.1099/mic.0.001513","DOIUrl":null,"url":null,"abstract":"<p><p>The studies of cave bacterial communities worldwide have revealed their potential to produce antibiotic molecules. In Costa Rica, ~400 caves have been identified; however, their microbial diversity and biotechnological potential remain unexplored. In this work, we studied the chemical composition and microbial diversity of a Costa Rican cave (known as the Amblipigida cave) located in Puntarenas, Costa Rica. Additionally, through culture-dependent methods, we evaluated the potential of its microbiota to produce antibiotic molecules. Mineralogical and elemental analyses revealed that the Amblipigida cave is primarily composed of calcite. However, small variations in chemical composition were observed as a result of specific conditions, such as light flashes or the input of organic matter. The 16S rRNA gene metabarcoding revealed an extraordinarily high microbial diversity (with an average Shannon index of ~6.5), primarily comprising bacteria from the phyla Pseudomonadota, Actinomycetota, Firmicutes and Acidobacteriota, with the family <i>Pseudomonadaceae</i> being the most abundant. A total of 93 bacteria were isolated, of which 15% exhibited antibiotic activity against at least one Gram-positive or yeast strain and were classified within the genera <i>Lysobacter</i>, <i>Streptomyces</i>, <i>Pseudomonas</i>, <i>Brevundimonas</i> and <i>Bacillus</i>. These findings underscore the highly diverse nature of cave microbiota and their significant biotechnological potential, particularly in the production of antibiotic compounds.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555687/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diversity pattern and antibiotic activity of microbial communities inhabiting a karst cave from Costa Rica.\",\"authors\":\"Felipe Vásquez-Castro, Daniela Wicki-Emmenegger, Paola Fuentes-Schweizer, Layla Nassar-Míguez, Diego Rojas-Gätjens, Keilor Rojas-Jimenez, Max Chavarría\",\"doi\":\"10.1099/mic.0.001513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The studies of cave bacterial communities worldwide have revealed their potential to produce antibiotic molecules. In Costa Rica, ~400 caves have been identified; however, their microbial diversity and biotechnological potential remain unexplored. In this work, we studied the chemical composition and microbial diversity of a Costa Rican cave (known as the Amblipigida cave) located in Puntarenas, Costa Rica. Additionally, through culture-dependent methods, we evaluated the potential of its microbiota to produce antibiotic molecules. Mineralogical and elemental analyses revealed that the Amblipigida cave is primarily composed of calcite. However, small variations in chemical composition were observed as a result of specific conditions, such as light flashes or the input of organic matter. The 16S rRNA gene metabarcoding revealed an extraordinarily high microbial diversity (with an average Shannon index of ~6.5), primarily comprising bacteria from the phyla Pseudomonadota, Actinomycetota, Firmicutes and Acidobacteriota, with the family <i>Pseudomonadaceae</i> being the most abundant. A total of 93 bacteria were isolated, of which 15% exhibited antibiotic activity against at least one Gram-positive or yeast strain and were classified within the genera <i>Lysobacter</i>, <i>Streptomyces</i>, <i>Pseudomonas</i>, <i>Brevundimonas</i> and <i>Bacillus</i>. These findings underscore the highly diverse nature of cave microbiota and their significant biotechnological potential, particularly in the production of antibiotic compounds.</p>\",\"PeriodicalId\":49819,\"journal\":{\"name\":\"Microbiology-Sgm\",\"volume\":\"170 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555687/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology-Sgm\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001513\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001513","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对全球洞穴细菌群落的研究揭示了它们生产抗生素分子的潜力。哥斯达黎加已发现约 400 个洞穴,但其微生物多样性和生物技术潜力仍有待开发。在这项工作中,我们研究了位于哥斯达黎加蓬塔雷纳斯的一个哥斯达黎加洞穴(称为 Amblipigida 洞穴)的化学成分和微生物多样性。此外,我们还通过依赖培养的方法,评估了洞穴微生物群产生抗生素分子的潜力。矿物学和元素分析表明,Amblipigida 洞穴主要由方解石组成。然而,由于特定条件的影响,如光线闪烁或有机物质的输入,化学成分出现了微小的变化。16S rRNA 基因代谢编码显示了极高的微生物多样性(平均香农指数约为 6.5),主要由假单胞菌门、放线菌门、固着菌门和酸性菌门的细菌组成,其中以假单胞菌门的数量最多。共分离出 93 种细菌,其中 15%对至少一种革兰氏阳性菌或酵母菌株具有抗生素活性,并被归类为溶菌属、链霉菌属、假单胞菌属、芽孢杆菌属和芽孢杆菌属。这些发现强调了洞穴微生物群的高度多样性及其巨大的生物技术潜力,特别是在生产抗生素化合物方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diversity pattern and antibiotic activity of microbial communities inhabiting a karst cave from Costa Rica.

The studies of cave bacterial communities worldwide have revealed their potential to produce antibiotic molecules. In Costa Rica, ~400 caves have been identified; however, their microbial diversity and biotechnological potential remain unexplored. In this work, we studied the chemical composition and microbial diversity of a Costa Rican cave (known as the Amblipigida cave) located in Puntarenas, Costa Rica. Additionally, through culture-dependent methods, we evaluated the potential of its microbiota to produce antibiotic molecules. Mineralogical and elemental analyses revealed that the Amblipigida cave is primarily composed of calcite. However, small variations in chemical composition were observed as a result of specific conditions, such as light flashes or the input of organic matter. The 16S rRNA gene metabarcoding revealed an extraordinarily high microbial diversity (with an average Shannon index of ~6.5), primarily comprising bacteria from the phyla Pseudomonadota, Actinomycetota, Firmicutes and Acidobacteriota, with the family Pseudomonadaceae being the most abundant. A total of 93 bacteria were isolated, of which 15% exhibited antibiotic activity against at least one Gram-positive or yeast strain and were classified within the genera Lysobacter, Streptomyces, Pseudomonas, Brevundimonas and Bacillus. These findings underscore the highly diverse nature of cave microbiota and their significant biotechnological potential, particularly in the production of antibiotic compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiology-Sgm
Microbiology-Sgm 生物-微生物学
CiteScore
4.60
自引率
7.10%
发文量
132
审稿时长
3.0 months
期刊介绍: We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms. Topics include but are not limited to: Antimicrobials and antimicrobial resistance Bacteriology and parasitology Biochemistry and biophysics Biofilms and biological systems Biotechnology and bioremediation Cell biology and signalling Chemical biology Cross-disciplinary work Ecology and environmental microbiology Food microbiology Genetics Host–microbe interactions Microbial methods and techniques Microscopy and imaging Omics, including genomics, proteomics and metabolomics Physiology and metabolism Systems biology and synthetic biology The microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信